Electrical Stimulation Greatly Increases Settlement, Growth, Survival, and Stress Resistance of Marine Organisms

Thomas J. Goreau
Global Coral Reef Alliance, Cambridge, USA Email: goreau@bestweb.net
Received 23 May 2014; revised 26 June 2014; accepted 5 July 2014
Copyright © 2014 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract
Increasing stress from global warming, sea level rise, acidification, sedimentation, pollution, and unsustainable practices have degraded the most critical coastal ecosystems including coral reefs, oyster reefs, and salt marshes. Conventional restoration methods work only under perfect conditions but fail nearly completely when the water becomes too hot or water quality deteriorates. New methods are needed to greatly increase settlement, growth, survival, and resistance to environmental stress of keystone marine organisms in order to maintain critical coastal ecosystem functions including shore protection, fisheries, and biodiversity. Electrolysis methods have been applied to marine ecosystem restoration since 1976, with spectacular results (Figures 1(a)-(c)). This paper provides the first overall review of the data. Low-voltage direct current trickle charges are found to increase the settlement of corals 25.86 times higher than uncharged control sites, to increase the mean growth rates of reef-building corals, soft corals, oysters, and salt marsh grass— an average of 3.17 times faster than controls (ranging from 2 to 10 times depending on species and conditions), and to increase the survival of electrically charged marine organisms—an average of 3.47 times greater than controls, with the biggest increases under the most severe environmental stresses. These results are caused by the fundamental biophysical stimulation of natural biochemical energy production pathways, used by all organisms, provided by electrical stimulation under the right conditions. This paper reviews for the first time all published results from properly designed, installed, and maintained projects, and contrasts them with those that do not meet these criteria.

How to cite this paper: Goreau, T.J. (2014) Electrical Stimulation Greatly Increases Settlement, Growth, Survival, and Stress Resistance of Marine Organisms. Natural Resources, 5, 527-537. http://dx.doi.org/10.4236/nr.2014.510048

1. Introduction
Low-voltage direct current trickle charges using Biorock electrolytic technology [1] [2] grow limestone structures
of any size or shape in the sea and produce the only self-repairing marine construction material that gets
stronger with age [3], and grows breakwaters capable of rapidly growing back severely eroded beaches [4]. But
in addition to physical benefits the process also has profound stimulatory effects on all forms of marine life.
Biorock structures have been repeatedly shown to greatly increase the settlement, healing, growth, survival, and
resistance to stresses such as extreme high temperatures, sedimentation, and eutrophication in stony corals [5]-[9], soft corals [10], oysters [11]-[13], sea grasses [14], and intertidal salt marsh grasses [15]. Many other organisms, including clams, tunicates, sponges, and fishes have also been observed to greatly increase their populations in electrical fields, but few measurements have been made on them to date. This review summarizes the available data on the effects of low-voltage direct current electrical stimulation on growth rates, survival, stress resistance, and physiology, which suggest the mechanism is a completely general one that benefits all organisms [16]. Results from projects that were properly designed, installed, and maintained are included in the main part of this paper. Because understanding the causes of negative results play an important role in the scientific method, projects that do not meet those criteria of proper design, installation, and maintenance are discussed separately.

 

2. The Impact of Electrical Stimulation on Marine Organisms

 

2.1. Published Results from Properly Designed, Installed, and Maintained Projects
The very first Biorock project, built at Grand Isle, Louisiana in 1976, was completely covered by multiple layers of spontaneously settling oysters that grew to adult size in about 3 months [17]. Recent Biorock projects in New York City show dense spontaneous settlement of oysters on rocks near Biorock structures. Nevertheless, no controlled studies of oyster settlement have yet been conducted. By the late 1980s it was found that electrically stimulated corals grew 3 – 5 times record rates for their species, even under conditions of severe stress. Since then hundreds of projects have been built all across the Caribbean, Pacific, Indian Ocean, and Southeast Asia, with most projects being in Indonesia, the global center of marine biodiversity. While slowly growing Biorock structures have been densely covered with hundreds of spontaneously recruiting corals [5] [16], only two studies have documented coral settlement on them [5] [6]. When these are compared to spontaneous recruitment of corals in natural habitats in the same units (recruits per square meter per month) the rates of settlement on electrically charged Biorock are found to be 1 to 4 orders of magnitude greater (Figure 2(a)), with a mean of 25.86 times higher than those reported from field settling experiments.

Growth rates of reef building hard corals [5]-[9], gorgonian soft coral [10], oysters [11]-[13], and salt marsh grass (Spartina alterniflora) [15] have been quantitatively compared on Biorock with identical clones off Biorock
in the same habitat. The results show that the electrically stimulated organisms grow typically 2 to 10 times faster (Figure 2(b)), with a mean of 3.17 times greater than controls. In addition hard and soft corals that have
been collected naturally broken and badly damaged are observed to heal completely, release little or no mucus, and regain bright color and polyp extension within a day, while controls remain pale and continue to look injured
and release mucus for two weeks [16]. Corals in electrical fields are observed to bud and branch more densely [8] [18]. This is reminiscent of the well known role of DC electrical fields in healing ruptured cellular membranes and cuts in the skin of organisms: if the polarity is correct the cut rapidly heals and closes, while if it is reversed the cut opens up [19]. Survival of hard corals [6]-[9], soft corals [10], oysters [11]-[13], and salt marsh grass [15] in electrical fields compared to un-electrified controls also show many times higher survival (Figure 2(c)), with a mean of 3.47 times higher than controls. This is especially the case in extreme stress conditions from excessively high temperatures, sedimentation, or eutrophication, when almost all the controls die, but most of the electrically charged organisms survive. For example in the severe 1998 Maldives bleaching event Biorock reefs had 16 to 50 times higher coral survival than surrounding reefs, and every single control coral transplanted onto cement structures died [20]. In the 2010 Thailand bleaching events corals bleached less (in some cases not at all), recovered faster, and had much higher survival than the same species of corals on surrounding reefs [21]. Similar results have been seen with oysters [13], salt marsh grass [15], and seagrass [14]. Control oysters in New York City nearly all died over a severe winter, and the shells of the survivors shrank in size because they were etched and dissolved from acidity caused by increased CO2 solubility in cold water. In contrast Biorock oysters continued to

biorock, goreau, pemuteran, bali, indonesia

Biorock, Pemuteran, Bali, Indonesia, mineral accretion, Goreau, Taman Sari
Figure 1. (a) Five-year-old Biorock electrical reef grown on formerly barren sand in Pemuteran, Bali, Indonesia, showing prolific coral growth and fish populations (photograph by EunJae Im); (b) Site at Pemuteran, Bali in 2001 at start of project (photograph by Rani Morrow-Wuigk); (c) Same location 10 years later in 2001 (photograph by Rani Morrow-Wuigk).

Electrical stimulation, Biorock, Goreau, figure 2
Figure 2. (a) Coral recruitment rates on Biorock limestone substrates [5] [6] versus natural limestone rock and artificial substrates (full list of citations given in [16]). Biorock coral settlement rates range from around 1 to 4 orders of magnitude higher when compared in the same units, spontaneously settling juvenile corals per square meter per month. The mean settlement rate on Biorock was 25.86 times higher than controls; (b) Linear growth rates of electrically stimulated corals [5]-[9], gorgonians [10], oysters [11]-[13], and salt marsh grass [15] versus controls. Each dot represents the average value of times series on populations of treated and control organisms. Mean growth rates of electrically stimulated organisms over the same time interval were 3.165 times higher than identical controls without electrical fields, ranging between 2 – 10 times higher. All points above the 1:1 line indicate electrical stimulation, to an extent indicated by the slope to the origin; (c) Survival of electrically stimulated corals [6]-[9] [20], oysters [11]-[13], gorgonians [10], and salt marsh grass [15] versus controls. Mean survival of electrically stimulated organisms was 3.47 times higher than controls, especially under severe stress conditions resulting in nearly total mortality of controls.
grow throughout the normally dormant period, and their shells were shiny with no signs of dissolution from acidity [13]. This is in part because the Biorock electrolytic process generates net alkalinity, and so counteracts acidification [3]. A comparison of 6 genera of corals grown on Biorock with genetically identical clones in the same habitat [22] showed that electrically stimulated corals had higher densities of the symbiotic alga Symbiodinium sp. (Figure 3(a)), even higher Symbiodinium cell division rates as measured by mitotic indices (Figure 3(b)), but had generally lower chlorophyll per Symbiodinium cell (Figure 3(c)). This is analogous to the lowered chlorophyll content of corals exposed to high light, which is interpreted as a mechanism to prevent excessive photosynthetic production and symbiotic alga growth [23]-[25]. The greatly increased growth rate of corals with electrical stimulation appears to occur despite less dependence on the symbiotic algae, and therefore is a direct effect of the electrical field itself.

Figure 3. (a) Density of Symbiodinium sp. in corals grown on Biorock versus the genetically identical mother colony from which they were transplanted in the same environment nearby [22]. Electrically stimulated corals had on an average 1.25 times higher symbiotic alga densities than controls; (b) Cell division rate of Symbiodinium sp. as measured by mitotic indices (percentage of dividing alga cells) in Biorock corals versus controls [22]. Electrically stimulated corals have an average of 1.74 times higher cell division rates, and presumably growth; (c) Chlorophyll content per Symbiodinium cell in Biorock corals versus controls. Birock corals have an average of 0.69 times less chlorophyll per symbiotic alga cell as controls [22]. This suggests that their productivity is being suppressed, as happens in high light [23]-[25]. Since coral calcification is normally proportional to photosynthesis of Symbiodinium sp. [26], this implies that the higher growth rate of Biorock corals is not due to higher photosynthesis, but due to greater energy availability provided by the electrical field.
All of these phenomena indicate that electrical fields in the right range greatly stimulate the health of marine organisms. These effects are not residual, they occur only when the electrical field is on (Figure 4(a)). These results are no surprise, since all forms of life from bacteria on up maintain a roughly tenth of a volt potential difference between the outside of the cell and the inside, and use electron and proton flow along this voltage gradient to make ATP and NADP, the fundamental energy and reducing currencies of all life. ATP production and protein synthesis are both directly stimulated by DC electrical currents over a very broad range spanning orders of magnitude [27], increasing with current to a maximum and then decreasing at excessive levels (Figure 4(b)). 2.2. Results from Improperly Designed Experiments This section discusses published results from projects that do not meet the criteria of proper training, materials, design, installation, and maintenance according to the inventors of the electrical stimulation method. All have failed to get the results achieved by those with proper training and materials, for several different reasons. As

Figure 4. (a) Control corals grown in extremely poor water quality habitat steadily lost weight while electrified corals grew very fast over 16 weeks. When the power was cut they started to decline like the controls, but immediately resumed growth when power was restored. This shows that coral growth stimulation is a property of the actively applied field, and does not have residual effects. Data from [28] plotted in [16]; (b) ATP concentration in micromoles per gram of tissue is shown as a function of electrical current. A five times increase in ATP is seen at the peak. Data from [27], plotted in [16].
there are several different causes for their failure to achieve prime results, these inappropriate projects are reviewed below by major categories of the flaws in their design or execution.

2.2.1. Mistake -1: Current Reversed

In these projects the power leads are connected backwards. Instead of the cathode being protected from corrosion, it rusts very rapidly instead, and the anode, instead of being clean, is instead heavily overgrown by rapid growth of soft minerals. Sometimes it takes months before they realize their mistake, and often the error was only recognized much too late when the author visited and pointed it out. These mistakes can easily be prevented by promptly sending photos for advice. In some cases reports based on this mistake have been published claiming that the method is a total failure. A report by the Texas A&M University Galveston Coastal Geology Laboratory was paid for the State of Texas General Lands Office (GLO), in order to see if electrical methods could protect steel with mineral coatings, as had been shown by Hilbertz in the 1970s. Texas A&M found instead that the charged structures rusted even faster than the controls! They never realized their mistake, nor apparently did Texas GLO.

2.2.2. Mistake 0: No Current

This can result from power supply failure or from cable breakage.

In some of these cases the project was properly designed and installed, but those running the project failed to realize that it was not under power and send photos to the author for confirmation and advice on how to fix it. Some of these continued making measurements for up to year not realizing that the project was not under power, and the mistake was only realized afterwards when they finally sent the first photographs to the author, who immediately recognized they were not receiving electrical current. That is why even trained groups are advised to send frequent photos for advice.

Other cases were by untrained imitators using incorrect design and materials. These failures were largely caused by power supplies burning out, electrical cables breaking, or bad contacts. Most such failures were caused by extreme storm events, such as hurricanes, typhoons, and cyclones, and were not properly diagnosed or repaired. In other cases they resulted from deliberate destruction by people running boats over the cables, breaking cables by dragging anchors over cables, by people dumping anchors on top of projects accidentally or deliberately, or saboteurs who cut cables for bizarre reasons of their own, usually involving a personal grudge against a local partner rather than the project itself. Unfortunately several projects that received no current resulted in published theses and papers.

One example is a thesis project by Zaidy Khan at the University of the South Pacific, which found no difference in growth rates of corals on structures which were thought to be under power but which in fact were not, and control structures known to receive no power.

The same error occurred in a thesis project by Andrew Taylor of James Cook University, supervised by Bette Willis, who sought to compare coral growth on structures with and without power. Taylor did not build any electrified structures, he simply used one of our field sites without permission, which his thesis advisor did not seem to realize was fundamentally unethical. The structure he thought was under power was in fact not, due to a burned out power supply that had not been repaired or replaced. In addition Taylor’s control corals died from disease, but a poster was presented anyway at the International Coral Reef Symposium claiming that Biorock corals did not grow faster than controls.

Another experiment done by Bogor University at Pramuka Island in the Seribu Islands north of Jakarta was victim of deliberate turning off of the power. The local power supply was in a commercial restaurant that was paid for supplying power, but which in fact turned the power off except during short visits by students making measurements. The interpretation of several Master’s theses was compromised by failure to realize what had happened until later.

In several cases groups in places like Thailand, the Philippines, Germany, Japan, the United States, and other places, who falsely claim to be trained in Biorock methods have been making unauthorized projects that have been complete failures. Their pitiful results are an obvious failure to all visitors, and an embarrassment because the imitators then say the method doesn’t work, not that they aren’t trained to do it properly.

2.2.3. Mistake 1: Current Too Low

This mistake results from powering too large an area with too small a power source, or failure to recognize that cables are broken or inadequate. One example comes from Terlouw [29], who reports measurements made on a project in Ko Tao, Thailand that was partially installed, but whose installation was never completed to standards. As a result of inadequate and broken cables the project received only a little power in the first year. In the second year new cables were installed and a failed power supply replaced so the project received power, but in the third year the cables broke and or the power supply failed, so only a small trickle or no power reached the project. These conditions were identified by the author from photographs sent from the project, but were not recognized by Terlouw, who reported that corals on Biorock grew faster than control corals by a factor of 1.54 in Year One, by a factor of 5.04 in Year Two, and by a factor of 1.33 in Year Three. Terlouw, not recognizing the cause of the variations, suggested that benefits are mixed, but our interpretation is that the higher results in Year 2 are due to that being the only year with adequate power, while Year 1 and Year 3 were underpowered, resulting in lower rates.

A similar mistake was made with oysters by Piazza et al. [30]. In this particular case the oysters thought to be getting electrical current were in fact getting almost none at all, because flawed experimental design concentrated the current onto fresh pieces of bare steel. Piazza et al. found that the oysters that they incorrectly thought to be under power grew only 1.15 times faster than controls.

2.2.4. Mistake 2: Current Too High

Over-charging has been known to cause negative effects from the very start, but most groups that set up experiments without proper training or materials use high power to get quick results. As shown in Figure 4(b) of this paper, excessive current causes negligible benefits, and if too high, causes negative effects, killing corals. Unfortunately most of those who get negative results due to overcharging do not realize their error, and many of them have published their results anyway. This mistake is the cause of the very poor results reported by Schuhmacher, Schillak, Van Treeck, Sabater, Yap, Eggeling, and their colleagues [31]-[39]. Since these authors did not realize their mistakes and published negative or minor results, it has been widely claimed that the method does not work, but in fact their poor results were entirely due to lack of proper training, experimental design, materials, etc. Such mistakes are even worse when done in a closed system tank. As a result of their overcharging the corals had only very small increases in growth rates, or they bleached and failed to grow entirely, or died.

2.2.5. Mistake 3: Ethical

Borrell et al. [40] [41] reported that one coral species grows a bit faster with electricity but that another species had its growth reduced and inhibited by the electrical field [40] [41]. In fact, the alleged reduction of one species’ growth was for a completely different reason: terminal phase male parrotfish established their breeding territories on the Biorock project, and marked them by biting off all the growing tips of that one species only, while ignoring them in the control site. The author of this paper personally set that project up, and documented the cause, but this was completely and knowingly ignored by the authors of the report, causing deceptive and false conclusions.

3. Conclusions

These results all point in the same direction: low-voltage trickle charges can greatly enhance the health of marine organisms. Voltage gradients in the right range appear to create the ideal biophysical conditions for the creation of biochemical energy, stimulating healing, growth, survival, and resistance to stress. The external field maintains the cell membrane gradient and greatly reduces the need for cells to spend a large part of their energy pumping electrons, protons, and ions to maintain the gradient, freeing this energy for metabolism, growth, and resisting environmental stress.

Unfortunately many people copying the Biorock method think they can do so without training. The results of improperly designed, installed, and maintained projects set up by people without training using improper materials always fail to replicate the results of projects by trained people using approved methods and materials, for several obvious reasons. These people inevitably blame the technology itself and not their lack of training. Almost every data point in these graphs represents populations of different species grown in the field under different electrical conditions, most of which are likely to be suboptimal. For example oyster growth rates next to a former toxic waste dump in New York City increased with current, up to 10 fold (NB, length increase only, the volume increase is a thousand fold), even though they were getting power less than a quarter of the time, and probably would have grown even faster with more power [13]. Much more work is needed to find out the optimal conditions, which are likely to be subtly different for each species. It has not escaped our attention that because membrane electro-chemical gradient-driven energy production is universal among all cellular life, going back to the last common ancestor, the method will apply to all organisms, although the effects and best conditions will depend on the electrical conductivity of their medium.

Maintaining ecosystem services in the face of accelerating global climate change will require methods that increase growth, survival, and resistance to escalating stress. These results indicate that the Biorock process is unique in accelerating settlement, growth, healing, branching, survival, and resistance to environmental stress. This allows marine organisms to be kept alive under conditions that would otherwise kill them, and enables entire complex ecosystems to be restored in a short period of time in places where there is no natural recovery (Figure 1). The Biorock electrolysis method, by stimulating the natural energy production mechanism, is the only ecological restoration method known that can maintain and restore marine ecosystems under conditions of accelerating global warming, sea level rise, ocean acidification, sedimentation, and excessive nutrient inputs, especially under severe stress where all other methods fail. It is urgent that the method should be optimized and applied on a large scale as soon as possible, especially in coral reefs, the ecosystem most threatened by global warming [42] [43], and in extending oyster reefs and salt marshes seaward to reduce coastal damage caused by global sea level rise.

References

[1] Hilbertz, W. (1979) Electrodeposition of Minerals in Sea Water: Experiments and Applications. IEEE Journal on Oceanic Engineering, 4, 1-19. http://dx.doi.org/10.1109/JOE.1979.1145428 [2] Hilbertz, W. and Goreau, T.J. (1996) Method of Enhancing the Growth of Aquatic Organisms and Structures Created Thereby. Patent 5543034. United States Patent Office. [3] Goreau, T.J. (2012) Marine Electrolysis for Building Materials and Environmental Restoration. In: Kleperis, J. and Linkov, V., Eds., Electrolysis, InTech Publishing, Rijeka, 273-290. http://www.intechopen.com/books/show/title/electrolysis [4] Goreau, T.J., Hilbertz, W., Hakeem, A.A.A., Sarkisian, T., Gutzeit, F. and Spenhoff, A. (2012) Restoring Reefs to Grow Back Beaches and Protect Coasts from Erosion and Sea Level Rise. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 11-34. http://dx.doi.org/10.1201/b14314-4 [5] Goreau, T.J. and Hilbertz, W. (2012) Reef Restoration Using Seawater Electrolysis in Jamaica. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 35-45. http://dx.doi.org/10.1201/b14314-5 [6] Jompa, J., Suharto, Anpusyahnur, E.M., Dwija, P.N. Subagio, J., Alimin, I., Anwar, R., Syamsuddin, S., Radiman, T. H.U., Triyono, H., Sue, R.A. and Soeyasa, N. (2012) Electrically Stimulated Corals in Indonesia Reef Restoration Projects Show Greatly Accelerated Growth Rates. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 47-58. http://dx.doi.org/10.1201/b14314-6 [7] Bakti, L.A.A., Virgota, A., Damayanti, L.P.A., Radiman, T.H.U., Retnowulan, A., Hernawati, Sabil, A. and Robbe, D. (2012) Biorock Reef Restoration in Gili Trawangan, North Lombok, Indonesia. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 59-80. http://dx.doi.org/10.1201/b14314-7 [8] Zamani, N.P., Abdallah, K.I. and Subhan, B. (2012) Electrical Current Stimulates Coral Branching and Growth in Jakarta Bay. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 81-89. http://dx.doi.org/10.1201/b14314-8 [9] Nitzsche, J. (2012) Electricity Protects Coral from Overgrowth by an Encrusting Sponge in Indonesia. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 91-103. http://dx.doi.org/10.1201/b14314-9 [10] Fitri D. and Rachman, M.A. (2012) Gorgonian Soft Corals Have Higher Growth and Survival in Electrical Fields. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 105-111. http://dx.doi.org/10.1201/b14314-10 [11] Karissa, P.T., Sukardi, Priyono, S.B., Mamangkey, G.F. and Taylor, J.J.U. (2012) Utilization of Low-Voltage Electricity to Stimulate Cultivation of Pearl Oysters Pinctada maxima (Jameson). In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 131-139. http://dx.doi.org/10.1201/b14314-12 [12] Berger, N., Haseltine, M., Boehm, J.T. and Goreau, T.J. (2012) Increased Oyster Growth and Survival Using Biorock Technology. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 141-150. http://dx.doi.org/10.1201/b14314-13 [13] Shorr, J., Cervino, J., Lin, C., Weeks, R. and Goreau, T.J. (2012) Electrical Stimulation Increases Oyster Growth and Survival in Restoration Projects. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 151-159. http://dx.doi.org/10.1201/b14314-14 [14] Vaccarella, R. and Goreau, T.J. (2012) Restoration of Seagrass Mats (Posidonia oceanica) with Electrical Stimulation. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, Florida, 161-167. http://dx.doi.org/10.1201/b14314-15 [15] Cervino, J., Gjoza, D., Lin, C., Weeks, R. and Goreau, T.J. (2012) Electrical Fields Increase Salt Marsh Survival and Growth and Speed Restoration in Adverse Conditions. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, Florida, 169-178. http://dx.doi.org/10.1201/b14314-16 [16] Goreau, T.J. (2012) Marine Ecosystem Electrotherapy: Practice and Theory. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 263-290. http://dx.doi.org/10.1201/b14314-20 [17] Goreau, T.J. (2012) Innovative Methods of Marine Ecosystem Restoration: An Introduction. In: Goreau, T.J. and Trench, R.K., Eds., Innovative Methods of Marine Ecosystem Restoration, CRC Press, Boca Raton, 5-10. http://dx.doi.org/10.1201/b14314-3 [18] Stromberg, S.M., Lundalv, T. and Goreau, T.J. (2010) Suitability of Mineral Accretion as a Rehabilitation Method for Cold-Water Coral Reefs. Journal of Experimental Marine Biology and Ecology, 395, 153-161. http://dx.doi.org/10.1016/j.jembe.2010.08.028 [19] Zhao, M., Song, B., Pu, J., Wada, T., Reid, B., Tai, G., Wang, F., Guo, A., Walczysko, P., Gu, Y., Sasaki, T., Suzuki, A., Forrester, J.V., Bourne, H.R., Devreotes, P.N., McCaig, C.D. and Penninger, J.M. (2006) Electrical Signals Control Wound Healing through Phosphatidylinositol-3-OH Kinase-􀈖 and PTEN. Nature, 442, 457-460. http://dx.doi.org/10.1038/nature04925 [20] Goreau, T.J. and Hilbertz, W. (2005) Marine Ecosystem Restoration: Costs and Benefits for Coral Reefs. World Resource Review, 17, 375-409. [21] Goreau, T.J. and Sarkisian, T. (2010) Electric Coral Reef Restoration in Thailand. Asia Pacific Coral Reef Symposium, 2, 100. [22] Goreau, T.J., Cervino, J. and Pollina, R. (2004) Increased Zooxanthellae Numbers and Mitotic Indices in Electrically Stimulated Corals. Symbiosis, 37, 107-120. [23] Wethey, D.S. and Porter, J.W. (1976) Sun and Shade Differences in Productivity of Reef Corals. Nature, 262, 281-282. http://dx.doi.org/10.1038/262281a0 [24] Porter, J.W., Muscatine, L., Dubinsky, Z. and Falkowski, P.G. (1984) Primary Production and Adaptation in Light- and Shade-Adapted Corals of the Symbiotic Coral Stylophora pistillata. Proceedings of the Royal Society of London B, 222, 161-180. http://dx.doi.org/10.1098/rspb.1984.0057 [25] Hennige, S.J., Suggett, D.J., Warner, M.E., McDougall, K.E. and Smith, D.J. (2009) Photobiology of Symbiodinium Revisited: Bio-Physical and Bio-Optical Signatures. Coral Reefs, 28, 179-195. http://dx.doi.org/10.1007/s00338-008-0444-x [26] Goreau, T.F. and Goreau, N.I. (1959) The Physiology of Skeleton Formation in Corals. II. Calcium Deposition by Hermatypic Corals under Various Conditions in the Reef. Biological Bulletin, 117, 239-250. http://dx.doi.org/10.2307/1538903 [27] Cheng, N., Van Hoof, H., Bockx, E., Hoogmartens, M.J., Mulier, J.C., De Ducker, F.J., Sansen, W.J. and De Loecker, W. (1982) The Effects of Electric Currents on ATP Generation, Protein Synthesis, and Membrane Transport in Rat Skin. Clinical Orthopaedics and Related Research, 171, 264-272. [28] Beddoe, L., Goreau, T.J., Agard, J.B.R., George, M. and Phillip, D.A.T. (2010) Electrical Enhancement of Coral Growth: A Pilot Study. In: Lawrence, A. and Nelson, H.P., Eds., Proceedings of the 1st Research Symposium on Biodiversity in Trinidad and Tobago, University of the West Indies, 116-122. [29] Terlouw, G. (2012) Coral Reef Rehabilitation on Koh Tao, Thailand: Assessing the Success of a Biorock Coral Reef. Vrije Universiteit, Amsterdam, 31. [30] Piazza, B.P., Piehler, M.K., Grossman, B.P., La Peyre, M.K. and La Peyre, J.L. (2009) Oyster Recruitment and Growth on an Electrified Structure in Grand Isle, Louisiana. Bulletin of Marine Science, 84, 59-66. [31] Schuhmacher, H. (2002) Use of Artificial Reefs with Special Reference to the Rehabilitation of Coral Reefs. Bonner Zoologische Monographien, 50, 81-108. [32] Schuhmacher, H. and Schillak, L. (1994) Integrated Electrochemical and Biogenic Deposition of Hard Material—A Nature-Like Colonisation Substrate. Bulletin of Marine Science, 55, 672-679. [33] Schuhmacher, H., Van Treeck, P., Eisinger, M. and Paster, M. (2000) Transplantation of Coral Fragments from Ship Groundings on Electro-Chemically Formed Reef Structures. Proceedings of the 9th International Coral Reef Symposium, Bali, 2, 23-27. [34] Van Treeck, P. and Schuhmacher, H. (1997) Initial Survival of Coral Nubbins Transplanted by a New Coral Transplantation Technology-Options for Reef Rehabilitation. Marine Ecology Progress Series, 150, 287-292. http://dx.doi.org/10.3354/meps150287 [35] Van Treeck, P. and Schuhmacher H. (1998) Mass Diving Tourism—A New Dimension Calls for New Management Approaches. Marine Pollution Bulletin, 37, 499-504. http://dx.doi.org/10.1016/S0025-326X(99)00077-6 [36] Van Treeck, P. and Schuhmacher, H. (1999) Artificial Reefs Created by Electrolysis and Coral Transplantation: An Approach Ensuring the Compatibility of Environmental Protection and Diving Tourism. Estuarine, Coastal and Shelf Science, 49, 75-81. [37] Sabater, M.G. and Yap, H.T. (2002) Growth and Survival of Coral Transplants with and without Electrochemical Deposition of CaCoB3B. Journal of Experimental Marine Biology and Ecology, 272, 131-146. http://dx.doi.org/10.1016/S0022-0981(02)00051-5 [38] Sabater, M.G. and Yap, H.T. (2004) Long-Term Effects of Mineral Accretion on Growth, Survival and Corallite Properties of Porites cylindrica Dana. Journal of Experimental Marine Biology and Ecology, 311, 355-374. http://dx.doi.org/10.1016/j.jembe.2004.05.013 [39] Eggeling, D. (2006) Electro-Mineral Accretion Assisted Coral Growth: An Aquarium Environment. Townsville Aquarium, Queensland, 21. [40] Borell, E.M. (2008) Coral Photophysiology in Response to Thermal Stress, Nutritional Status and Seawater Electrolysis. Centre for Tropical Biology, University of Bremen, Bremen, 134. [41] Borell, E.M., Romatzki, S.B.C. and Ferse, S.C.A. (2009) Differential Physiological Responses of Two Congeneric Scleractinian Corals to Mineral Accretion and an Electrical Field. Coral Reefs, 29, 191-200. [42] Goreau, T.J. and Hayes, R.L. (2005) Global Coral Reef Bleaching and Sea Surface Temperature Trends from Satellite- Derived Hotspot Analysis. World Resource Review, 17, 254-293. [43] Goreau, T.J., Hayes, R.L. and McAllister, D. (2005) Regional Patterns of Sea Surface Temperature Rise: Implications for Global Ocean Circulation Change and the Future of Coral Reefs and Fisheries. World Resource Review, 17, 350- 374.

biorock_review_natural_resources_2014


2017 GCRA Activities

 

GCRA Wishes a

Happy New Year 2018

Please support the GCRA Year-End
Fund Raising Campaign

2017 GCRA Yearly Report

Thomas J. F. Goreau, PhD
President, Global Coral Reef Alliance

Corals continued dying around the world in 2017 from global warming, pollution, and disease, and GCRA continued to show policymakers and the public the severity of the damage and to pioneer regenerative solutions. GCRA will accelerate its efforts in 2018.

GCRA’s Indonesia coral reef restoration projects continued to lead the world in 2017. Our Balinese partner, Yayasan Karang Lestari, recipient of the 2012 United Nations Equator Award for Community-Based Development, was selected for special honors at the 2017 World Ocean Day Event at the UN Oceans Conference for turning their village from the poorest in Bali to one of the most prosperous by restoring their coral reef. Last year, corals on Biorock reefs in Indonesia survived when severe bleaching killed almost all the corals around them, and Biorock reefs grew back a severely eroded Sulawesi beach in just a few months by growing corals and seagrasses in front of Pulau Gangga Dive Resort. Biorock Indonesia teams continued to manage around 300 Biorock reefs, start many new ones, and train new teams to start projects all across Indonesia. See 2017 Biorock Indonesia training workshop clips below:

Biorock coral restoration projects were maintained at several locations in the Panama Caribbean. One of the finest coral reefs left in the Caribbean, with exceptionally large ancient corals, was studied in the Guna Comarca (Indigenous Territories). Another reef with high live coral cover was found right in front of the Panama Canal breakwaters, and efforts are underway with local environmental groups to save this reef from being killed soon by dredging for a container port.

The first new Biorock reef restoration projects in Jamaica in 25 years were started near the last ones. A coral nursery growing elkhorn coral was established. This coral used to form huge forests at this site, but all vanished decades ago. The project is very small because of the tiny amount of coral now available to propagate, but will expand quickly as it grows rapidly. The best reef left in Jamaica was filmed, and efforts re-started with the local community to get it protected and managed locally.

New coral reef restoration projects were developed for early 2018 with local partners in Grenada, Mexico, Indonesia, Panama, Bahamas, and Vanuatu. These will incorporate new advances in Biorock Technology, and feature use of CCell wave energy devices to protect eroding shores and grow beaches back. See announcement

GCRA researchers published a paper in the Journal of Animal Behavior showing electrical fields around Biorock structures inhibit sharks from biting but have no effect on other fishes. Available here. The tiny electrical field confuses sharks so they don’t bite. Biorock coral reef restoration projects can help protect people and sharks from harming each other.

Biorock oyster and saltmarsh restoration projects in cold waters continued at our toxic waste sites in New York City, and a short experiment was done to test applicability in San Francisco Bay.

Research projects were started with the University of Aalborg in Denmark, and the University of the Basque Country in Spain focusing on the chemistry, physics, and engineering properties of the materials produced by the Biorock process.

Tom Goreau spoke on large-scale community-managed marine ecosystem restoration at the United Nations Oceans Conference in New York, and at the United Nations Climate Change Conference in Bonn. His paper on the factors controlling the rate of CO2 drawdown to reverse climate change was published in the Proceedings of the UN Food and Agriculture Organization Global Conference on Soil Organic Carbon in Rome. He also participated in international conferences on agricultural regeneration in Mexico, on regenerative development to reverse climate change in London, and on re-greening of the Sinai Desert in the Netherlands.

GCRA filmed an interview by Tom Goreau with Professor Robert Kent Trench, the world’s top expert on coral symbiosis, looking at the oldest coral reef photographs from Belize and discussing the changes. Tom Goreau featured in two full-length documentary films that are now in final production stages for release in 2018. One film directed by Marcy Cravat will be on soil carbon and reversing climate change, the other by Andrew Nisker will be on environmental impacts of golf course chemicals. A new documentary was funded to start filming in 2018 on the historic GCRA Coral Reef Photograph Collection, the world’s largest from the 1940s, 1950s, and 1960s, and the long-term changes they document.

GCRA researchers looked at a major collection of nearly a thousand corals from the Great Barrier Reef, made 50 years ago in 1967, but packed away in a museum without ever being identified or studied, and is assisting getting the corals documented and identified, along with the major taxonomic collections of Caribbean corals.

GCRA proudly announces the GCRA Coral Classics Series, with the first volume to be posted in early 2018 being A STUDY OF THE BIOLOGY AND HISTOCHEMISTRY OF CORALS, the foundational work of coral biology and coral reef ecology. This masterpiece by Thomas F. Goreau, the world’s first diving marine scientist and founder of modern coral reef science, was his 1956 Yale University Ph.D. thesis. Although it is the essential starting point for all serious students of corals and coral reefs, it has long been unavailable. The GCRA publication includes all the original figures and photographic plates from the classic study of coral anatomy, ecology, and physiology available, newly re-edited individually for clarity.


Panamanian bleaching refuge reefs discovered with huge ancient corals

Panamanian Caribbean coral reef temperatures have been very hot in 2017 and have hovered near the bleaching temperature threshold almost all year.

Bleaching began around March, unusually early, but by June waters had cooled down below the threshold, and corals went into a bleaching recovery phase at that time.

Water temperatures rose again above bleaching thresholds later in the year, leading to predictions of a second bleaching event in a single year.

Fortunately a second bleaching event did not happen despite high temperatures, for a very good reason! It has been a very wet rainy season, with heavy rains almost every day, and the sky is grey with dense clouds, or black with thunderheads, with little or no blue sky, so there has been much less sunshine and light stress late in the rainy season compared to in earlier in the season.

In the 1980s my bleaching experiments with Jamaican corals at combinations of different temperature and light levels showed clearly that:

1) Bleaching took place only above a temperature threshold, showing temperature to be the prime trigger for bleaching.

2) Above that temperature, the rate of bleaching was proportional to the light level, indicating that high light level was a secondary factor for bleaching.

Peter Glynn independently did similar experiments in Okinawa, and found the same.

These experiments explained the clear effects of shading of corals on bleaching responses that we studied in the field in the first Caribbean-wide high temperature bleaching event in 1987, why a second bleaching event did not happen in Panama this year, and why the wettest tropics will be a major refuge for corals against global climate change, but only in areas free of direct human impacts such as deforestation, sewage, and agricultural chemicals.

In Jamaica, where high temperature stress was much less than Panama this year, about half the corals were bleached two weeks ago, much more than in Panama. Jamaica has much higher light than Panama, where the skies are grey through most of the rainy season. Belize, which suffered temperature stress between that of Panama and Jamaica this year, but whose climate is more similar to Jamaica, is predicted to have had more severe bleaching in 2017 than either Jamaica or Panama, due to its combination of thermal and light stress. There have been no reports of bleaching from Belize yet. It will be interesting to see if there was mortality there.

The protective effect of high cloudiness in the warmest time of year is uniquely related to the extreme vertical circulation of the equatorial atmosphere right up to the tropopause. When one flies over Panama or Indonesia in the rainy season there is no blue sky to be seen, even at 10 Kilometers height (30,0000 feet). These refuges are limited to equatorial reefs, and Panama, Colombia, and Indonesia are likely to be the most important. As global warming continues, these corals may have a unique chance of survival due to protection by local weather patterns.

It must be emphasized that these are NOT refuges because the corals are more “resilient”, they are refuges because they are lucky to suffer much less stress from high light, on top of high temperature. Many Australian and American coral “scientists” claim any location where corals survive have “resilient” corals, but they have simply been lucky to escape additional stresses for purely local reasons!

In Panama we have recently found two reef refuges with exceptionally high live coral cover, diversity, and health.

1) We have surveyed a reef with 30-40% live coral cover in shallow water right in front of the eastern end of the Panama Canal breakwater. This reef is not only at the high end for coral cover in the Caribbean today, despite a century and a half of severe disturbance from dredging and pollution, it now has higher live coral cover than when it was last studied in the 1980s, an exceptional circumstance! However it is imminently threatened by dredging for a huge new port that will be constructed only a few hundred meters from the reef! GCRA and our Panamanian colleagues will soon issue a report with photos and video of this reef, and recommendations for protecting it.

2) We have found a truly exceptional reef of global significance in the Guna Yala Indigenous Territories with even higher live coral cover. This reef is remote from human habitation, is free of weedy algae caused by high nutrients (and has no Diadema). The shallow reef is covered with huge intact colonies of elkhorn and staghorn corals of sizes and abundance that I have not seen in the Caribbean since the 1970s. They are growing on top of a layer of even larger intact dead corals of the same species and are clearly regenerating because the reef is free of algae and sediment. Also astonishing is the size, age, and ecomorphotype (phenotype) diversity of coral species, including vast numbers of huge ancient coral heads from 1 to 6 meters tall, and up to 8 meters across. Nevertheless the reef is being affected by black band, yellow band, white band, dark spot, and white plague diseases. These diseases have been declining across the Caribbean over the last two decades, as the most susceptible corals die, or as the disease becomes less virulent. The virulence of diseases at this site suggests that the pathogens have only recently reached the area, since most of the corals are healthy intact with only relatively small areas affected so far.

In the 1950s, Thomas F. Goreau, in a paper on gigantism in reef corals, emphasized the importance of exceptional and rare reef habitats where all the corals were huge and healthy. Jamaica used to have about half a dozen such locations, only one now survives in degraded form. This newly discovered remote reef in the Guna Indigenous territories may be one of very few places left in the Caribbean like this, and urgently needs to be protected. GCRA is preparing a photographic report on this extraordinary reef, and will train Guna marine resource managers to monitor and assess such remarkable sites.

Although Guna Yala has long been regarded as having some of the finest coral reefs in the Caribbean, there has been essentially no work on the best reefs. Peter Glynn’s magnificent work has focused on the completely different Panamanian Pacific reefs. The Smithsonian Tropical Research Institution had a marine lab for many years in westernmost Guna Yala. This was located in the most densely populated area of the Indigenous Territory, where reefs have been in poor condition since the 1980s due to severe algae overgrowth of the corals caused by raw sewage. The Gunas threw the Smithsonian out because American coral researchers removed big corals without permission and then arrogantly treated the Gunas as ignorant natives who should mind their own business. As a result, the good reefs in Guna Yala have never been studied, and diving with tanks is strictly banned by the Gunas. There is therefore a crucial need to establish Guna coral reef monitoring, restoration, and protection efforts for these refuge reefs of global importance. There have also been Biorock coral reef restoration projects in Guna Yala for 21 years, which are doing well, and will soon be expanded.

As the current La Niña sets in, Indonesia and Australia are expected, from the well known El Niño Southern Oscillation teleconnections, to leave the “cold” phase they have been in during the long extended El Niño that is just over, and to enter the “warm” phase this southern summer. Already these areas are unusually warm, and there is therefore a strong likelihood of even more severe bleaching in 2018 than in the last three years. It will be very important to identify the major coral refuges in Indonesia that are protected, like Panama, by high clouds in the warm season.


CCell Provides the Energy to Save Coral Reefs

British wave energy start-up Zyba has teamed up with Biorock, which builds artificial coral reefs with the hope of simultaneously providing energy and coastal protection for islands. It has developed a new curved technology, the CCell, with a lightweight design that allows it to capture a greater amount of the ocean’s awesome power than its competitors.

Working with Biorock – both the company and technology name – Zyba hopes to provide island communities with a new source of clean and reliable energy. The power will also be used in the construction of coral reefs, which provide important coastal protection and bustling ecosystems for marine wildlife.

Hidden among the reefs, the CCells will take advantage of the total theoretical global wave energy potential of 32 petawatt (PW) hours per year. So far, no large-scale application for wave technologies has been successful and so Zyba is championing a smaller-scale approach. The power it creates is designed to enter the grid network and work alongside other renewable sources.

Symmetric vs asymmetric wave energy devices

The concept of the CCell arose from the company’s founder, William Bateman, asking a simple question: “The energy in the ocean leads from the open ocean towards the shore, so it’s an asymmetric problem,” he says. “All I fundamentally did was question why are people making symmetric devices.

“I never meant to start a business in wave energy but I was looking at their devices and they were all symmetric, so they were either round or they were flat.”

Bateman went to University College London in 2012, where he asked friends to test a curved panel against a flat one. The results came back vastly in favour of a curved panel, which moved 40% more than the flat one, based on wave motion. As testing continued, researchers showed that as the wave hits the face of the panel, the curved shape forces the energy towards the central core where it could be collected. Additionally, the shoreward face of the panel is subject to less stress than a flat panel because the convex shape cuts through the water smoothly, reducing the risk of the panel becoming damaged in rough weather.

From this point, the project snowballed into Zyba and the patented CCell technology. With prototypes and testing complete, the final CCell was made comprising a glass and carbon fibre composite, making it light, flexible and, importantly, corrosion-resistant to increase its lifespan in seawater. There is only one moving part in each of the modular units and it has the highest known power-to-weight ratio of any wave device.

A symbiotic relationship protecting reefs

Zyba aims to tackle energy problems that large sources, such as offshore wind, cannot. “We have really moved away from using wave power for grid-scale electricity generation in the short term, but instead really trying to carve out a niche where wave energy is unique and actually has a significant intrinsic benefit,” says Bateman. “That’s really come about in the last six to nine months. Our focus at the moment has really been on coastal protection using a combination of the CCells and our partner’s technology, which is called Biorock.”

Biorock has been developed over the last 30 years by Professor Wolf Hilbertz, who died in 2007, and Dr Tom Goreau, as a way to grow artificial concrete. Biorock uses electrolysis to create a limescale-like substance by attracting the minerals in seawater. The rock this creates grows incredibly fast, as much as several centimetres a year, and is incredibly strong.

“The biggest single challenge for Biorock has always been its thirst for power at sea, conversely, we’re coming into a market where we are generating this power at sea and we need to get it to shore,” explains Bateman.

The companies have thus formed a partnership that allows them to build artificial concrete that protects coastal areas, while bringing in revenue from renewable energy production. “By collaborating with Biorock we are developing a symbiotic relationship in which we provide them with the power that they need,” says Bateman. “Equally, we can position our device where Biorock is growing a reef, so they are providing protection and fundamentally mass which helps to keep our unit in position.”

Clean and cool energy, despite challenges

As a start-up, Zyba’s main challenge throughout development has been financing. “For a physical product, where you have to do lab testing or actually offshore deployments, the costs are relatively high,” says Bateman. “When you’re doing the research and testing, you don’t really have time to be applying for funding, and then you get to the end of one round of funding and you have to stop and think, where am I getting the next bit? Obviously, you try to overlap them but often the funding doesn’t overlap so you do spend a lot of time and concern on how to grow in a sensible way.”

However, increased recognition for the technology over the past year has led to greater opportunities. Zyba was chosen to be part of the Clean+Cool Mission, organised by Long Run Works and sponsored by Innovate UK and the Department of International Trade it connects start-ups with investors in Silicon Valley, California, and allows entrepreneurs to share and develop ideas.

“Earlier this year we were selected alongside a group of 19 other companies to represent the greatest and the best of UK clean tech,” says Bateman. “It’s really interesting talking to the people over there because their attitude to start-ups is very, very different to what we see in the UK. It’s almost like everyone has a start-up, everyone’s got something going on in their garage and it’s all very chaotic.”

The trip encouraged the Zyba team to work on making changes in big increments by targeting smaller savings, leading to a focus on the nitty-gritty of the supply chain. “We originally thought that we’d manufacture the devices in the UK because the tooling behind the construction of our composite paddles was one of the major costs,” says Bateman. “Over the last six months we’ve actually been able to drive down the cost of our tooling for our relatively small device, from about £50,000 down to almost £2,500. The cheaper tooling is actually a better product – it’s a better module than the one we’d been quoted £50,000 for.”

Following Clean+Cool, Zyba decided to ship flat pack paddle moulds instead of the paddles themselves. It will provide local craftsmen, particularly yacht builders who are used to the required composite materials and methods, with the moulds and tools to make the CCell close to where it will be installed. This will help reduce the cost of the CCell, as well as supporting local communities.

Connecting wave energy to the grid

Zyba hopes the first CCell will be running offshore next year. “We are working really hard to get a row of devices installed just off the coast of Mexico,” says Bateman. “Hopefully by January, at the latest March, next year, it’ll be installed. What’s constraining us at the moment is overcoming some of the regulatory hurdles.”

CCells will be positioned along the coast of the island of Cozumel, starting with just one module. “The vision is that you would install one just to start with, just to make sure that you understand the local conditions and everything is correct, and then in the following years install in a line of devices along the shore,” explains Bateman.

Energy will then be transported underground to the island, where it will enter the grid system and work alongside other power sources. “Give or take 10%-20% of the energy that we generate will be needed to grow the Biorock, and the rest of that power we can then provide as an export to shore,” says Bateman.

The CCell could help provide clean, renewable power for small island communities, while protecting the coast and the underwater environment from the ocean. It’s a technology that kills two birds with one stone, and showcases a lot of potential on a small scale.

CCell: the energy to save coral


Before and After : Biorock Electric Reefs in Curaçao

Before and After time-lapse series by Michael Duss showing spectacular coral growth on Biorock electric reefs in Curaçao.

This video shows the coral development at our BioRock project in Curacao with the status September 2017. The video was created by the Curacao Divers for the Curacao BioRock Foundation.

 


Biorock Coral Restoration comes back to Jamaica after 25 years

BIOROCK ELECTRIC CORAL REEF RESTORATION COMES BACK HOME TO JAMAICA AFTER 25 YEARS

The first new Biorock electrical coral reef restoration project in Jamaica for 25 years has been started.

The small project is located in front of Westender Inn, at the extreme end of the West End of Negril, facebook.com/westenderinn

Electric reef restoration technology was invented and developed 30 years ago in Jamaica by late architecture Professor Wolf Hilbertz and Dr. Tom Goreau at the Discovery Bay Marine Laboratory (T. J. Goreau & W. Hilbertz, 2012, Reef restoration using seawater electrolysis in Jamaica, in T. J. Goreau & R. K. Trench (Editors), Innovative Technologies for Marine Ecosystem Restoration, CRC Press).

It is a few kilometers from the last Jamaican Biorock project, in Little Bay. Local fishermen were amazed to see corals grow right over the solar panel powered Biorock reef.

Made from layers of conch shells, it was crowded with young lobsters and fish until the Biorock reef, the solar panel, and nearby houses were demolished by Hurricane Ivan on September 11-12 2004. Local fishers are eager to see more Biorock!

The area offshore from the project site had been a vast forest of elkhorn coral that reached the surface, which was demolished by Hurricanes Allen, Gilbert, and Ivan. There has been little or no sign of reef recovery along most of the coastline, except in a few small areas.

We have found elkhorn colonies nearby and are rescuing loose naturally broken coral fragments that are still alive but that would otherwise die, and propagating them on the Biorock reef.

There are so few remaining living naturally broken fragments now left in the area that we are starting with only around a dozen small naturally broken coral fragments, mostly Acropora palmata, Porites astreoides, Porites divaricata, Diploria clivosa, Diploria strigosa, and Agaricia agaricites. Two of these were found completely bleached where they had been washed into crevices.

But there are young corals of half a dozen species all over on the rocks underneath the Biorock structure, and these will grow up through the Biorock reef, while new corals will settle all around.

The result is that we will grow the reef upwards by about a meter, protecting the rocky shore from erosion, and eventually allowing sand to build up. The entire seafloor of the area is now eroding severely because it is densely covered with rock-boring sea urchins, constantly chewing holes right into the dead reef rock. We will turn a collapsing reef back into an actively growing one.

The return of life-saving Biorock electric reef restoration technology back home to the island of its birth can restore the lost corals, fishes, and vanishing beaches all around Jamaica if done on a large scale. Twenty-five years of involuntary exile from Jamaica were forced on us by lack of funding and support from both Jamaican and foreign institutions.

Since then we did around 400 Biorock projects in around 40 countries all around the world, keeping reefs alive when they would die from high temperatures and pollution, growing corals back rapidly in places where there has been no recovery, and even growing back severely eroded beaches in just months.

The Global Coral Reef Alliance thanks the Westender Inn, Negril for their support for the project, in particular Dan Brewer, Keith Duhaney, Steve Drotos, the entire Westender staff, Booty, Beenie, Ken, Ceylon Clayton, and the people of Orange Hill and Little Bay, Westmoreland, Jamaica.

Let’s make Jamaica’s coral reefs, beaches, and fisheries beautiful again: bring Biorock back home where it was born!

Westender, Jamaica, Biorock, coral, restoration, reef, Goreau

Staghorn coral growing nearly a centimeter a week on a Biorock reef in Negril, Jamaica. Photograph by Wolf Hilbertz, 1992


NYCDEP about to destroy historic 10 year NYSDEC salt marsh, oyster, and mussel restoration at McNeil Park, College Point, Queens

March 31 2017,
To: NYS DEC Commissioner Basil Seggos State Senator Tony Avella

New York City Department of Environmental Protection is racing ahead with irresponsible plans to destroy the most successful oyster, mussel, and salt marsh restoration project ever done in New York City, or anywhere else.

These projects, approved by New York State Department of Environmental Conservation, have for 10 years pioneered new methods for restoring these valuable ecosystems, providing habitat for birds, fish, and shellfish, protecting shores from erosion, and improving coastal water quality, which could save the City billions of dollars in adapting to and mitigating global warming and global sea level rise (please see current photos attached).

The MacNeil Park projects have shown for the first time how to restore vibrant marine ecosystems to barren shores where everything had died from toxic waste dumping at the site for more than 50 years. They not only restored life to a wasteland, but showed for the first time how to grow these organisms under extreme stress conditions that they normally could not survive. Our team is now expanding the project to fill in all the gaps.

10 years of work will be destroyed if DEP puts the storm drain where they intend. This will not only flush water shown by chemical analysis to have illegally high concentrations of toxic lead, copper, zinc, hydrocarbons, and untreated sewage, but the water flow will wash away the beach sediment and cause severe local coastal erosion at a site that is a designated public recreational area and entry way for kayaks.

Using the Biorock restoration method, we had 100% survival of oysters during the winter when 93% of control oysters died. The few surviving control oysters stopped growing in winter, and their shells were chalky, crumbly, and dissolving due to cold acidic water, but Biorock oysters grew all winter, and their shells were bright and shiny with no dissolution.

The Biorock restoration method has grown salt marsh lower in the intertidal zone than salt marsh grass can tolerate, it grows taller, faster, greener, and spreads faster than controls, grows back in larger spreading patches after every winter when controls die, and has prolific root growth and mussel populations which bind sediment and prevent erosion by waves.

The mussel growth has been so extraordinary that in a few years we have raised the height of the beach where we are growing them by up to a foot, much faster than the rate of global sea level rise, about an eighth of an inch a year. Therefore, we are able to grow beaches upwards at places where they are now washing away from erosion.

Oysters have spontaneously settled near our projects, but not away from them, showing that oyster settlement is increased by the Biorock process. These oysters have shown exceptionally high growth and survival.

These incredible results show for the first time that it is possible to extend salt marshes seaward to protect coasts from erosion. All salt marshes in the US are rapidly eroding and collapsing into the sea due to global sea level rise and increased storm wave strength caused by global warming. Jamaica Bay is the worst example of this. The methods pioneered at the McNeil Park project could save Jamaica Bay salt marshes, and help protect Kennedy Airport from flooding by the sea and storm surges (remember Sandy!).

This destruction of a historic restoration project is entirely un-necessary! There is an existing storm drain at the site that runs out past the project to the low tide mark, built long ago to prevent contaminated water washing directly onto the beach. But instead of using it or upgrading it, DEP plans to dump polluted water directly at the shoreline high tide mark, and flush away 10 years of extraordinarily successful work with polluted water!

The bulldozers are right at the edge of the project, ready to move into action unless DEC can get them to responsibly act to save New York City’s precious green shorelines! We urgently appeal for your help to save the projects that will make New York the leader in natural shore protection.

Sincerely yours,
Thomas J. F. Goreau, PhD, President, Global Coral Reef Alliance

Follow up to September 14th 2016 letter:
Please Stop College Point storm drain killing world’s most important salt marsh and oyster restoration projects

McNeil Park is an important recreational area in Queens, that is now a pioneering environmental restoration and public education site. All photos were taken on March 29 and March 30 2017
Wildlife is now returning to a devastated area because of the restoration projects. These Green Shoreline ecosystems provide the best and cheapest protection of the coast against erosion and storm surges
The proposed discharge point for water polluted with unacceptable levels of lead, zinc, copper, and hydrocarbons, will also dump untreated sewage at the shore line onto the beach during storm events. right onto the public kayak entry area.
DEP has dumped pipes to flush contaminated water onto the beach right next to the restoration project signs (left), even though DEC has apparently not approved the drain project. So DEP cannot be unaware of the restoration projects!
This rock near the projects has about a dozen oysters growing on it, as well as many barnacles
This rock near the project has had around 20 oysters settle, grow, and survive on it. Such density of oysters is not found away from the projects
Mussel populations have dramatically expanded in recent years in the project area, and now cover the bottom in many places. They rapidly filter the water and clean it.
We are growing salt marsh lower in the water than it can normally grow, and the dense roots hold back the beach sediment and prevent it being washed away during storm waves. New leaves are now starting to spring up, and in a month there will be bright green salt marsh grass all over the area, unless it is killed by polluted storm runoff
The dense mussel and salt marsh growth has raised the height of the bottom by up to a foot in a few years
The salt marsh and mussels we have restored have raised the beach level by holding sand in place. Where they don’t grow, the sand and mud are washing away. Our goal is to fill the gaps and cover the entire area with growing habitat and fill in the spaces in between the clumps we have grown. The storm drain will flush polluted water right on top of the project, kill them, and wash away the sand. Eventually the sea wall will collapse because of erosion. Green shores are the cheapest and best protection
An old storm drain runs all the way from the shore right at the site of the new DEP storm drain. The new drain should do the same
The old drain goes all the way out into deep water past the low tide mark in order to avoid polluting the shore. Incredibly, DEP does not plan to do the same with the new drain, so they will destroy the habitat!

Biorock electric reef restoration projects to start in India

Scientists to use solar energy to regenerate locally extinct corals

Joydeep Thakur
Hindustan Times

Biorock, Bali
Photo by: Eunjae Im

Marine scientists will use solar energy for the first time in India to regenerate corals that become extinct from the Gulf of Kutch off the Gujarat coast thousands of years ago.

Scientists across the world are trying to come up with various methods that can regenerate bleached and locally extinct corals. One such technique, popularly called biorock, has helped scientists in many countries to conserve and protect coral reefs also known as underwater gardens.

Pemuteran in Indonesia has the world’s largest coral regeneration project where biorock has been used.

India has four major coral reefs — Andaman and Nicobar Islands, Lakshadweep, Gulf of Mannar and Gulf of Kutch. While the reefs in Andaman are considered the richest and most diverse, the ones in Kutch area are the poorest. Only 30% of the coral in Kutch area are alive, albeit in a degraded condition.

“We have identified a site in the shallow waters near Shivrajpur in Dwarka area of Gujarat where the pilot project could be carried out. There are some challenges such as siltation and high tidal fluctuations which we have to address. Using solar power is under consideration and the technical details are being worked out,” Shyamal Tikader, chief conservator of forest in Gujarat, said.

A steel structure would be first installed on the seabed and could be of any shape ranging from a simple arch to as complex as that of a motorcycle. Photo by: Eunjae Im

Coral reefs are like underwater gardens and one of the most diverse ecosystems on earth providing food and shelter to millions of species. They are under threat because of climate change-induced ocean acidification, pollution and human activities among others.

“We will be using electricity to re-grow corals for the first time in India. These corals had become locally extinct from the Kutch region long ago but can be found in other reefs across India. Plans are going on to start the pilot project in April with the help of solar power,” Chowdula Satyanarayana, a coral scientist with the Zoological Survey of India (ZSI) who is leading the project, said.

A steel structure would be first installed on the seabed and could be of any shape ranging from a simple arch to as complex as that of a motorcycle. Cables would connect the structure to a power source such as solar panels, which would float on the surface of the sea.

Very low doses of electricity – less than 12 volts – would then be run through the structure via the cables. The electricity would trigger a chemical reaction in the sea water, similar to that of electrolysis. Minerals, mostly calcium carbonate (limestone), would get deposited on the steel structure.

“Divers would attach fragments and twigs of corals brought from other reefs like Gulf of Mannar to the steel structure. The structure, which now will have a layer of limestone on it, can act as a base for the corals to grow again,” Satyanarayana added.

Scientists have selected five species of branching corals for the project which grow very fast and once used to dominate the Kutch reef. The zooxanthellae – tiny plant-like organisms that make live corals colourful – return automatically helping the corals to thrive.

The coral polyps, which are animals, and zooxanthellae share a mutual relation. The corals provide shelter to the zooxanthellae and compounds these tiny algae need for photosynthesis. The algae in return produce oxygen and help the corals to remove wastes.

They also supply them with glucose and amino acids which the corals use to make fats, proteins and carbohydrates and even calcium carbonate. Most importantly, the zooxanthellae give colours to the otherwise white corals.

Scientists have selected five species of branching corals for the project which grow very fast and once used to dominate the Kutch reef. Photo by: EunJae Im

Under stressful conditions such as pollution, high temperature and ocean acidification among others, the coral polyps expel the zooxanthellae. Without the colour, the corals turn white a process which is popularly called coral bleaching.

With a base of limestone and low doses of current supplied at regularly, the corals could grow nearly 20 times faster and have better chances of survival, experts claimed.

“It is just like giving oxygen to an athlete while he is running. With oxygen, he would be able to run faster and for a longer period. Similarly, it has been seen that providing small doses of electricity helps the corals to recuperate faster and survive longer,” Satyanarayana said.

The ZSI is trying to rope in Thomas Goreau, a US-based coral expert who along with Wolf Hilbert developed and patented the biorock method.

“We have helped many countries in setting up biorocks. Next, I would be providing special materials and help Satyanarayana. Biorock doesn’t just help corals but have helped to restore the fish population, which often takes shelter in these structures,” Goreau told Hindustan Times over email.

Original article: Hindustan Times


This Coral Restoration Technique Is ‘Electrifying’ a Balinese Village

The technique is also changing attitudes and inspiring locals to preserve their natural treasures

smithsonian.com 
coral_goddess_and_snapper.jpg__800x600_q85_crop
Under the waters in Pemuteran, in Bali, this structure might be helping restore a coral reef. (Rani Morrow-Wuigk)

As you walk the beach in Pemuteran, a tiny fishing village on the northwest coast of Bali, Indonesia, be careful not to trip on the power cables snaking into the turquoise waves. At the other end of those cables are coral reefs that are thriving with a little help from a low-voltage electrical current.

These electrified reefs grow much faster, backers say. The process, known as Biorock, could help restore these vital ocean habitats at a critical time. Warming waters brought on by climate change threaten many of the world’s coral reefs, and huge swaths have bleached in the wake of the latest El Niño.

Skeptics note that there isn’t much research comparing Biorock to other restoration techniques. They agree, however, that what’s happening with the people of Pemuteran is as important as what’s going on with the coral.

Dynamite and cyanide fishing had devastated the reefs here. Their revival could not have succeeded without a change in attitude and the commitment of the people of Pemuteran to protect them.

building_sturctures.jpg__800x450_q85_crop_upscale.jpg
A Pemuteran resident assembles one of the Biorock reef restoration structures. (Rani Morrow-Wuigk)

Pemuteran is home to the world’s largest Biorock reef restoration project. It began in 2000, after a spike in destructive fishing methods had ravaged the reefs, collapsed fish stocks and ruined the nascent tourism industry.  A local scuba shop owner heard about the process and invited the inventors, Tom Goreau and Wolf Hilbertz, to try it out in the bay in front of his place.

Herman was one of the workers who built the first structure. (Like many Indonesians, he goes by just one name.) He was skeptical.

“How (are we) growing the coral ourselves?” he wondered. “What we know is, this belongs to god, or nature. How can we make it?”

A coral reef is actually a collection of tiny individuals called polyps. Each polyp lays down a layer of calcium carbonate beneath itself as it grows and divides, forming the reef’s skeleton. Biorock saves the polyps the trouble. When electrical current runs through steel under seawater, calcium carbonate forms on the surface. (The current is low enough that it won’t hurt the polyps, reef fish or divers.)

Hilbertz, an archihtect, patented the Biorock process in the 1970s as a way to build underwater structures. Coral grows on these structures extremely well. Polyps attached to Biorock take the energy they would have devoted to building calcium carbonate skeletons and apply it toward growing, or warding off diseases.

Hilbertz’s colleague Goreau is a marine scientist, and he put Biorock to work as a coral-restoration tool. The duo says that electrified reefs grow from two to six times faster than untreated reefs, and survive high temperatures and other stresses better.

Herman didn’t believe it would work. But, he says, he was “just a worker. Whatever the boss says, I do.”

So he and some other locals bought some heavy cables and a power supply. They welded some steel rebar into a mesh frame and carried it into the bay. They attached pieces of living coral broken off other reefs. They hooked it all up. And they waited.

Within days, minerals started to coat the metal bars. And the coral they attached to the frame started growing.

“I was surprised,” Herman says. “I said, damn! We did this!”

“We started taking care of it, like a garden,” he adds. “And we started to love it.”

Now, there are more than 70 Biorock reefs around Pemuteran, covering five acres of ocean floor.

indonesia_-_yayasan_karang_lestari_teluk_pemuteran_supp2.jpg__600x0_q85_upscale
(Rani Morrow-Wuigk)

But experts are cautious about Biorock’s potential. “It certainly does appear to work,” says Tom Moore, who leads coral restoration work in the U.S. Caribbean for the National Oceanic and Atmospheric Administration.

However, he adds, “what we’ve been lacking, and what’s kept the scientific community from embracing it, is independent validation.” He notes that nearly all the studies about Biorock published in the scientific literature are authored by the inventors themselves.

And very little research compares growth rates or long-term fitness of Biorock reefs to those restored by other techniques. Moore’s group has focused on restoring endangered staghorn and elkhorn corals. A branch snipped off these types will grow its own branches, which themselves can be snipped and regrown.

He says they considered trying Biorock, but with the exponential expansion they were doing, “We were growing things plenty fast. Growing them a little faster wasn’t going to help us.”

Plus, the need for a constant power supply limits Biorock’s potential, he adds. But climate change is putting coral reefs in such dire straits that Biorock may get a closer look, Moore says.

The two endangered corals his group works on “are not the only two corals in the [Caribbean] system. They’re also not the only two corals listed under the Endangered Species Act. We’ve had the addition of a number of new corals in the last two years.” These slower-growing corals are harder to propagate.

“We’re actively looking for new techniques,” Moore adds. That includes Biorock. “I want to keep a very much open mind.”

But there’s one thing he’s sure about. “Regardless of my skepticism of whether Biorock is any better than any of the other techniques,” he says, “it’s engaging the community in restoration. It’s changing value sets. [That’s] absolutely critical.”

earthday_and_school_children_from_pemuteran.jpg__800x450_q85_crop_upscaleYayasan Karang Lestari Pemuteran, the local nonprofit that works with the creators of Biorock, also makes environmental education a priority. (Rani Morrow-Wuigk)

Pemuteran was one of Bali’s poorest villages. Many depend on the ocean for subsistence. The climate is too dry to grow rice, the national staple. Residents grow corn instead, but “only one time a year because we don’t get enough water,” says Komang Astika, a dive manager at Pemuteran’s Biorock Information Center, whose parents are farmers. “Of course it will not be enough,” he adds.

Chris Brown, a computer engineer, arrived in Pemuteran in 1992 in semi-retirement. He planned to, as he put it, trade in his pinstripe suit for a wetsuit and become a dive instructor.

There wasn’t much in Pemuteran back then. Brown says there were a couple good reefs offshore, “but also a lot of destruction going on, with dynamite fishing and using potassium cyanide to collect aquarium fish.” A splash of the poison will stun fish. But it kills many more, and it does long-lasting damage to the reef habitat.

When he spotted fishermen using dynamite or cyanide, he’d call the police. But that didn’t work too well at first, he says.

“In those days the police would come and hesitantly arrest the people, and the next day they’d be [released] because the local villagers would come and say, ‘that’s my family. You’ve got to release them or we’ll [protest].’”

But Brown spent years getting to know the people of Pemuteran. Over time, he says, they grew to trust him. He remembers a pivotal moment in the mid-1990s. The fisheries were collapsing, but the local fishermen didn’t understand why. Brown was sitting on the beach with some local fishermen, watching some underwater video Brown had just shot.

One scene showed a destroyed reef. It was “just coral rubble and a few tiny fish swimming around.” In the next scene, “there’s some really nice coral reefs and lots of fish. And I’m thinking, ‘Oh no, they’re going to go out and attack the areas of good coral because there’s good fish there.’”

That’s not what happened.

“One of the older guys actually said, ‘So, if there’s no coral, there’s no fish. If there’s good coral, there’s lots of fish.’ I said, ‘Yeah.’ And he said, ‘So we’d better protect the good coral because we need more fish.’

“Then I thought, ‘These people aren’t stupid, as many people were saying. They’re just educated differently.’”

pejalang.jpg__800x450_q85_crop_upscaleLocals formed a coast guard to protect their reefs after they started to understand the connection between healthy reefs and healthy fish. (Rani Morrow-Wuigk)

It wasn’t long before the people of Pemuteran would call the police on destructive fishermen.

But sometimes, Brown still took the heat.

Once, when locals called the police on cyanide fishers from a neighboring village, Brown says, people from that village “came back later with a big boat full of people from the other village wielding knives and everything and yelling, ‘Bakar, bakar!’ which means ‘burn, burn.’ They wanted to burn down my dive shop.”

But the locals defended Brown. “They confronted these other [fishermen] and said, ‘It wasn’t the foreigner who called the police. It was us, the fishermen from this village. We’re sick and tired of you guys coming in and destroying [the reefs].’”

That’s when local dive shop owner Yos Amerta started working with Biorock’s inventors. The turnaround was fast, dramatic and effective. As the coral grew, fish populations rebounded. And the electrified reefs drew curious tourists from around the world.

One survey found that “forty percent of tourists visiting Pemuteran were not only aware of village coral restoration efforts, but came to the area specifically to see the rejuvenated reefs,” according to the United Nations Development Program. The restoration work won UNDP’s Equator Prize in 2012, among other accolades.

Locals are working as dive leaders and boat drivers, and the new hotels and restaurants offer another market for the locals’ catch.

“Little by little, the economy is rising,” says the Biorock Center’s Astika. “[People] can buy a motorbike, [children] can go to school. Now, some local people already have hotels.”

Herman, who helped build the first Biorock structure, now is one of those local hotel owners. He says the growing tourism industry has helped drive a change in attitudes among the people in Pemuteran.

“Because they earn money from the environment, they will love it,” he says.

Original Article: Smithsonian.com


GCRA: 25 years of cutting-edge coral reef research and restoration

January 22 2016, St. Georges, Grenada.

The Global Coral Reef Alliance was founded 25 years ago as a global voluntary network to do cutting edge research and development on reversing the threats to coral reefs and developing new methods to restore coral reefs, fisheries, mangroves, sea grass, salt marsh, and beaches naturally, working on critical problems that nobody else works on because there is no funding.

26 years ago, as Senior Scientific Affairs Officer for Global Climate Change and Biodiversity issues at the United Nations Centre for Science and Technology for Development, I realized that no group anywhere in the world was focusing on solving fundamental scientific problems related to coral reefs because they were obsessed with doing whatever silly fad of the day that the funding agencies were throwing all their money at.

GCRA invented the method to predict coral bleaching accurately from satellite data 25 years ago and showed then that coral reefs worldwide were the first ecosystem to be seriously damaged by global warming, and that corals could not take any further warming. Governments have deliberately chosen to let coral reefs die for 25 years rather than admit the clear scientific evidence that global warming was already causing severe damage or do anything to reverse it. In the last 25 years we have lost most of the corals, and this year we will lose many more. In the past 25 years GCRA has worked in reefs in most of the small island states of the Caribbean, Pacific, Indian Ocean, and Southeast Asia. They have lost most of their biodiversity, fisheries, shore protection, and tourism resources, and are the first and worst victims of climate change even before their islands are flooded.

GCRA invented the Biorock method for restoring all marine ecosystems and coastal habitats, which is the only method of marine ecosystem restoration that greatly increases settlement, growth, survival, and resistance to environmental stress of all marine organisms, because it directly stimulates the fundamental biophysical mechanism by which all forms of life make their biochemical energy. Biorock technology keeps coral reefs alive when they would die, and restores them, and the beaches behind them, in a few years in places where there is no natural recovery. In the Maldives in 1998 Biorock reefs had 1600% to 5,000% higher coral survival than nearby reefs, and grew back a completely eroded beach in 2-3 years.

GCRA has also done leading research on reversing the effects of pollution on coral reefs, identifying the pathogens causing coral, sponge, and algae diseases, works with indigenous communities to manage and improve their biological resources, and has led global efforts at the United Nations Framework Convention on Climate Change for 25 years to reverse global climate change by increasing soil carbon sinks, among many other activities.

The list of activities in 2015 are listed below. Any year of the last 25 would have shown an equally diverse range of projects all over the globe.

After 25 years of non-stop, unpaid, back-breaking labor, we find that the situation of coral reef degradation, and the ignorance of the causes and solutions, have only gotten worse. Vast sums are spent by the funding agencies on nonsensical propaganda about “resilience” in order to avoid political action or funding to directly reduce threats to reefs or actively restoring them. Without active restoration no marine protected area will be able to protect corals or fisheries as global climate change starts to kick in, but no funding agency supports serious restoration, though all fund creating parks that can’t work in the long run.

GCRA gets dozens of critical requests for help for restoration every month from groups all over the world, but we can’t respond to most because we have no endowment, no operating funds, no budget for travel, and no benefactors. Essentially all our small donations are earmarked for specific projects, and most of those are in-kind donations. Had we realized how disastrous funding would be, it would have been insane to have even started! After 25 years GCRA is as poor as when it started, starting our 25th year with only a couple of hundred dollars in our account to support our world wide activities, which is more than I have in my personal account, this work has driven me to destitution.

But it is too late now, the situation is even more critical than ever as the global warming-caused extinction of coral reef ecosystems accelerates, and 2016 could well be the coup de grace for many reefs, with more to follow in the coming years unless the world chooses to take serious and effective action to reverse global warming.

In Paris governments refused to act in time to avert reef extinction, and so effectively condemned them to death. Ironically the world came very close to effective action: on December 1 the French Government proposed that soil carbon be included in the climate change treaty and governments commit to increasing soil carbon to reverse climate change (a proposal I had originally made in the 1980s), but on December 10 the French Government dropped their own proposal in the rush for a political “agreement” that is incapable of meeting its own goals due to fundamental carbon accounting errors that need to be corrected if it is to be effective.

In 2016 we face a critical emergency to build as many Biorock Coral Arks as possible to maintain species populations in areas that will lose them if they bleach severely this year. Since there is no funding to do so, GCRA will continue to work with all local groups in developing countries wherever they can find local support to grow back their marine ecosystem resources, since the international community has left coral reef ecosystems to die.

2015 GCRA ACTIVITIES

GCRA develops new projects in around 10 countries every year, but since we are constantly busy we never have time to keep the web page up to date, so it may seem we are up to nothing! Here is a list of some major projects done in 2015.

1. Indonesia
Indonesia continued to have most Biorock coral reef restoration projects in the world as Indonesian Biorock groups continued to install many new projects in Bali, Lombok, Java, Sulawesi, Ambon, Flores, and Sumbawa, with more constantly under development. Biorock Indonesia PT was formed as the umbrella group for future Biorock projects along with Yayasan Karang Lestari (Protected Coral Foundation, winner of the 2012 UN Equator Award for Community Based Development and the Special UNDP Award for Ocean and Coastal Management), and local partners. Tom Goreau taught the 10th Indonesian Biorock Coral Reef and Fisheries Restoration Training Workshop during the Bali Buleleng Dive Festival. Large, spectacular new projects were installed in Bali and Sulawesi. A Biorock shore protection reef to grow back an eroded beach was designed and installed in Sulawesi, and a similar project was designed in West Papua to be installed next year. An integrated whole-watershed and coastal zone nutrient, water, and soil management plan was drafted to protect the coral reefs of Pemuteran, Bali, from eutrophication, and collaboration with the Indonesian Biodiversity Research Center of Udayana University was established.

2. Panama
New Biorock coral reef, sea grass, and mangrove restoration projects were installed at the Galeta Marine Laboratory in collaboration with Dr. Stanley Heckadon of the Smithsonian Tropical Research Institution. The solar powered Biorock coral reef restoration project at Yandup, Uggupseni, Guna Yala (Autonomous Guna Indian territory) was expanded. This pilot project aims to save Guna islands now being abandoned due to sea level rise. All Panama Caribbean coral reefs underwent severe high temperature coral bleaching in 2015, affecting both Biorock projects. The Galeta Biorock project is located next to a similar unpowered control structure, so comparison of coral mortality and survival on the two structures will allow benefits of Biorock to be determined. We expect Biorock corals will show much higher coral recovery and survival based on results after severe bleaching events in the Maldives, Thailand, and Indonesia. When results are available they will be posted here.

3. Curaçao
The largest Biorock coral restoration project in the Caribbean was installed in Curaçao with Curaçao Divers. The project consists of 7 Biorock reefs linked together on the shelf slope. The corals show excellent growth, and fish populations are building up. The latest reports from Curaçao Divers will be reported here.

4. Saint Barthelemy
The Biorock coral reef restoration project in St. Barthelemy continued to show excellent growth of all four Acropora species (elkhorn, staghorn, and both hybrid varieties), as well as all other coral species, and has created an oasis of coral, fish and plankton in a barren, high wave stress environment. New Biorock coral reef restoration projects to restore deeper coral reefs, and to grow back shallow reefs to cause eroded beach sand to grow back naturally, were planned and approved for installation in 2016.

5. Bahamas
Cutting edge work on the response of sharks to low voltage direct current electrical fields was done in Bimini with Marcella Uchoa and Craig O’Neill. The dramatic results will be reported here when published. The Biorock coral reef and seagrass restoration project in Abaco continues to show excellent coral growth, spectacular seagrass growth, and dense fish populations, and our long term studies of corals killed by algae overgrowth and diseases near golf course nutrient sources continues.

6. Mexico
An environmental assessment for restoration of threatened endemic species in the Sea of Cortez using Biorock mariculture methods, and for development of tidal current energy resources, was done, and approved by the Indigenous Comca’ac (Seri) Indian Ejido of Sonora. Pilot projects should start in early 2016

7. Polynesia
Biorock ecotourism coral restoration projects by Denis Schneider of Espace Bleu have expanded to more hotels in Bora Bora, Raiatea, and Moorea, and research has shown Biorock benefits for giant clams, pearl oysters, and corals. A collaborative proposal for research on effects of Biorock on coral settlement was funded by the French government and will start in early 2016.

8. Spain
Research projects with collaborators at the Plentzia Marine Laboratory of the University of the Basque Country in Spain found electrical fields resulted in greatly increased cell proliferation rates in mussel livers. Biorock minerals grown under different conditions were identified and their chemistry determined. Further research is underway on fundamental biophysical, biochemical, and cellular effects of the Biorock process.

9. United States
Tom Goreau gave talks on climate, soil, water, and temperature interactions at the Conference on Restoring Water Cycles to Reverse Global Warming in Boston, and was active in leading the Soil Carbon Alliance efforts to urge governments to reverse global climate change through increasing soil carbon. The solar-powered Biorock coral reef restoration projects at Lauderdale By The Sea came to the end of their mandated three year monitoring program. The Town terminated all funding for the project and cut off the cables to the solar power buoys the Biorock team had designed and built to remove them. The project was literally cut off from power right during a severe high temperature coral bleaching event, when most needed! The project could easily be powered from a nearby fishing pier, but funding is crucially needed to save it.

10. Cuba
Tom Goreau gave papers on use of wave energy to restore coral reefs and regrow beaches naturally at the Cuban Marine Science Congress, on soil carbon, climate change, and soil fertility restoration at the Cuban Agro-Ecology Conference, and met with coral reef and shore protection colleagues.

11. France
Tom Goreau gave several talks at the Paris UN Framework Convention on Climate Change as a delegate of the Caribbean Community Centre for Climate Change. These talks, in both government delegate areas and the public areas, focused on vulnerability of reefs and coasts to climate change, soil carbon to stabilize CO2 at safe levels, and on restoration of marine ecosystems, fisheries, and coasts.

These materials are summarized in the video links below:

Tom Goreau presentation: Paris COP-21 12/2015 United Nations Framework Convention on Climate Change

Tom Goreau presentation at Paris COP-21 12/2015 United Nations Framework Convention on Climate Change

12. Other countries
New projects were approved for early 2016 in Italy, Papua, Indonesia, Vanuatu, Maldives, St. Barthelemy, and Saint Martin, and possibly more, while many requests for new projects came from a dozen more countries, but did not move forward due to lack of either funding or permission for serious marine ecosystem restoration.

2016 PRIORITIES

In 2016 GCRA’s top priorities will be the global bleaching crisis caused by record global high temperatures and El Niño, documenting coral survival on bleached Biorock projects, reconnecting old Biorock projects in the Maldives before bleaching hits, starting new Biorock Coral Arks to maintain surviving coral populations in as many places as possible before impacts get worse, starting Biorock shore protection reef projects to grow eroded beaches back naturally in as many places as possible, and starting large-scale Biorock mangrove, sea grass, and salt marsh carbon restoration projects as possible, while continuing to promote soil carbon solutions to reverse global climate change from research, implementation, to global policy stages.

2016 KEY YEAR IN CORAL REEF EXTINCTION FROM GLOBAL WARMING

It is now 25 years since I showed the satellite sea surface temperature data at Al Gore’s US Senate Hearings on Climate Change proving that coral reefs were already being damaged by global warming, and that the threshold for severe coral bleaching was only 1 degree C. In 1992 at the signing of the Framework Convention on Climate Change in Rio de Janeiro I warned that the treaty would not prevent most corals from dying from high temperatures in the next 20 years. For 25 years governments have simply let the corals die, while denying there were global impacts of high temperature. Now they are mostly gone, and the Paris agreement is too weak to protect them. 2016 will be a record high temperature year, beating the 2015 record according to the UK Met Office. In 2015 severe coral bleaching hit Florida, Hawaii, Cuba, and Panama. It will be crucial to document all bleaching in 2016 in the hope that CO2 can be controlled in time to prevent the complete extinction of coral reefs, which is just barely possible if serious action were to start immediately both building Biorock Coral Arks to maintain temperature resistant populations where possible and reducing future impacts of global warming by increasing soil carbon.

Thomas J. Goreau, PhD
President, Global Coral Reef Alliance
President, Biorock Technology Inc.
Coordinator, Soil Carbon Alliance
Coordinator, United Nations Commission on Sustainable Development Small Island Developing States Partnership in New Sustainable Technologies