Ninety years of change on the Great Barrier Reef

By Tom Goreau
 
Ninety years ago the Cambridge University Great Barrier Reef Expedition at Low Isle laid the foundations of modern coral research. 
 
The Global Coral Reef Alliance team has just spent the week with a Canadian documentary film crew filming the Low Isle reefs to document the changes since 1928.
 
The 1928-1929 expedition did pioneering work on the physiology of corals, on water quality, and many other subjects, covered in a voluminous series of scientific reports.
 
The Expedition found that corals bleached if their temperature was raised about one degree C, and died if it was raised about 2 degrees C. These limits that have not changes in nearly a century. They also discovered mass coral spawning, and found that corals would avidly eat small zooplankton animals, but would not eat microscopic plants, or phytoplankton.  These fundamental findings were only “discovered” by Australian coral scientists generations later.
 
They had no underwater diving gear or underwater photographic equipment, so their photos were of exposed coral reefs at low tide, corals collected from tide pools, and water samples. At one point they borrowed pearl diver’s helmets and pumps, and dived to see the reef, limited to the length of the hose, but unfortunately they had no underwater cameras to record the reef below the water surface.
 
Sir Maurice Yonge, leader of the Cambridge University Great Barrier Reef Expedition with his wife Mattie, the expedition doctor, on Low Isle in 1928.
The first underwater photography of the Great Barrier Reef was not done until 1950, by my grandfather Fritz Goreau (who used the professional name Goro), the inventor of macro and close up photography, and many other methods of scientific visualization to reveal what previously could not be seen or imaged. He photographed reefs underwater along the length of the GBR, all the way to Mer (Murray Island) in the extreme north end of the GBR near New Guinea (which Yonge had identified as the best reefs in the GBR), and  he photographed along the entire GBR from the air.
 
Fritz Goreau (left) at Low Isle in 1950
 
After my father, Tom Goreau, pioneered diving marine science in the 1940s, first explored the ecological zonation of coral reefs, and did pioneering work on the anatomy, ecology, physiology, and biochemistry of corals, Sir Maurice adopted our family as his scientific successors. My father, my mother, Dr. Nora Goreau, the first Panamanian and Central American marine scientist, and I worked with Maurice researching coral physiology, giant clams, and Fungiacava, most unusual clams we discovered in the Red Sea that are invisible because they bore inside of coral skeletons and feed directly out of the coral’s stomach. After the 1928 Great Barrier Reef Expedition, Maurice became the world’s top authority on the mollusks (clams, snails, and their relatives), and published classic books on the ecology of marine life around Britain. He told me in his old age that he had never expected to work on coral reefs again, but working with my father rejuvenated him and gave him a new lease of life. 

 

Sir Maurice Yonge as I knew him.
In 1967 Maurice and my father went back to the GBR, where they were the first to study coral communities adapted to very muddy habitats. Maurice was shocked to see the changes at Low Isle since 1929. The shallow reef, which had been completely covered with magnificent hard corals, was now dominated by soft corals. The sugar industry had moved into the lowland areas of Queensland, using Pacific Islanders, mostly from the Solomon Islands and Vanuatu, for labor. Whole villages and islands were emptied of their people at gun point, forced onto ships, and used as slaves in Australia, although described by the euphemism “blackbirding”. Many died, and few returned home. As a result of the near total deforestation of Queensland lowlands, coastal waters turned muddy brown from eroded soils. After the Second World War the sugar plantations, whose yields had declined severely from erosion of soil and nutrients, began to apply chemical fertilizers on a large scale, most of which washed down rivers into the sea, triggering harmful algae blooms that overgrew and killed almost all the nearshore coral reefs. This process is called eutrophication.
 
In the early 1990s Peter Bell, a chemical engineer at the University of Queensland, discovered the quantitative nutrient limits that separate healthy coral reefs from dead algae-overgrown eutrophic reefs. He re-established the Low Isle Research Laboratory to repeat the 1920s Cambridge University team measurements. Low Isle reefs that had been completely covered with hard corals now had only around one tenth that amount. He and his colleague Ibrahim Elmetri found that phytoplankton (microscopic algae), had increased four or five times, explaining why the blue waters had turned green, and why phytoplankton-eating soft corals now dominated over hard corals. They found that the phosphate content of the waters (derived from land-based runoff) had risen, explaining why algae, which had barely been noted in the 1920s, now dominates the shallow reef flat.
 
Instead of encouraging this important work on the causes of the declining health of the GBR, his funding was cut, his lab was closed, and the authorities spent millions of dollars dumping agricultural fertilizer on reefs to “prove” that they had no effect on corals! When they “discovered that fertilizers were not a problem”, they didn’t say that the reef they chose was already eutrophic and covered with algae! Denying the causes of coral decline from nutrients, crown of thorns, diseases, and bleaching caused by global warming has been a systematic pattern. The Australian authorities have long boasted of being perfect environmental managers, so admitting that most of the corals had died under their “management” was something they concealed and denied, paying scientists for hire (“biostitutes”) to say that everything was fine, and if there was any damage it was just a natural cycle that would go away all by itself because their perfect management had made the reefs “resilient” so they would bounce back by themselves.
 
Peter Bell accompanied the Global Coral Reef Alliance team to Low Isle this year. He was shocked to see how much algae had spread over the dead shallow reef at Low Isle. The corals had been badly affected by bleaching caused by global warming in recent years, another cause of reef mortality that the authorities denied until almost all the corals were dead and they could no longer hide the obvious catastrophe:
 
Our filming showed a dramatic decline in corals compared to the old photos. In the best areas of Low Isle reefs we still found huge ancient corals, some of the largest I have ever seen. However there were no large Acroporas, the coral family that used to be overwhelmingly dominant, and which were the fastest growing and most important for fish habitat and shore protection. The Acroporas we saw were small, most had settled after the last bleaching event. Although there were some very large corals, their species diversity was low. Almost all large corals consisted of Porites lutea heads, branching Porites cylindrica, Goniopora, Oxypora, and Heliopora, all corals that are more resistant to high temperature and pollution than Acropora. These are basically the last survivors. The water is now rapidly warming, and if this continues another bleaching event could kill many of them in the coming weeks and months. 
 
We also looked at coastal fringing reefs, which used to line the entire coast except for river mouths. Brandon Walker and Bennett Walker, of the local Kuku Yulanji Aboriginal community, took us out on areas that had been huge green seagrass beds full of turtles and dugong, behind reefs which they remembered covered with live corals, full of barramundi, blue starfish, and sea urchins. All have vanished under slimy mud washed down the rivers from the sugar cane fields inland. We filmed local organic farmer Andre Leu, who has improved his farm soil so that it no longer erodes and washes precious topsoil and nutrients into the sea. He has increased the organic matter in his soil six times through composting, without adding chemical fertilizers, so his soil is much more fertile, and holds much more water. In contrast to his farm, where heavy rain soaks into the ground, the rain on the sugar fields runs right off the hard compacted soils and does not infiltrate into the ground, shortening the growing season while killing the reefs with mud and fertilizer nutrients. If all the farmers used his methods, dumping of mud and nutrients onto the reef could stop. Moreover he is absorbing CO2 from the atmosphere, while his neighbors are releasing it! If all farmers used progressive carbon farming, we could end global warming and reduce CO2 to safe, pre-industrial levels.
 
The Global Coral Reef Alliance plans to scan the historic photographs from the Yonge and Goreau coral reef photograph collections from 1928, 1950, 1967, and 1998 (when I lived on Low Isle and filmed the reefs on all sides) to compare them to the 2018 footage. These have never seen before in Australia,and  will be posted on the web and used for historic documentation and public education. GCRA will work with courageous truth-telling scientists like Peter Bell and Ibrahim Elmetri, the Low Isle Preservation Society, Great Barrier Reef Legacy, a local coral reef documentation and preservation organization founded by John Rumney, who has dived on the reef since 1974 and seen most of it die, with the Mayor of Port Douglas, the local environmental management organizations, and the Traditional Owners of this coast, the Kuku Yulanji Aboriginal community to: 
1) make the historic photographs available in Australia for public education on the long term changes to the reefs
2) re-estabish the Low Isles Research Laboratory for cutting edge environmental monitoring and research on coral reef sustainability
3) restore the damaged coral reefs, both offshore and inshore, using modern Biorock electric reef technology, which the Australian authorities have never allowed.

The warning was issued 20 years ago on the once Great Barrier Reef

The warning was issued 20 years ago, when the Townsville Bulletin published this article about how coral bleaching was affecting the Great Barrier Reef and how global warming would kill the corals. 
 
 

 

Transcript: 

Coral bleaching killing our reefs

By DEBBIE XINOS

CORAL bleaching is killing the world’s coral reef systems.

But according to experts, the Great Barrier Reef has escaped serious damage — for now.

Unless stringent management practices were adopted worldwide the future for even the Great Barrier Reef was bleak, they said.

The warning was issued yesterday at the International Tropical Marine Ecosystems Management Symposium conference in Townsville.

Marine Ecologist Terry Done said this year’s warm weather had caused coral bleaching on a record number of reefs.
He said while this could be attributed to unprecedented climatic changes, it was too early to lay blame on the effects of global warming.

“If the projections of global climate change do come about it’s likely we will see more years like this in the future”, Dr Done said.

Add to that increased human activity and the likelihood of wide-spread coral reef destruction was almost guaranteed, reef expert John McManus said.

Dr McManus said the main concern was the overfishing of reef stocks, which could affect the natural balance between fish and algae.

“This the real test — we have a large part of the world’s corals which have been bleached”, he said. “Those which come back and those which don’t will tell us lot about the effects of coral bleaching.

Reef expert Gregor Hobson said Australia, in particular North Queensland, played a vital role in ensuring the survival or the world’s reefs.

The Great Barrier Reef’s status as the largest and healthiest reef system in the world makes it an ideal role model for other countries, he said.

 

The Minister of Environment, Robert Hill, had previously announced that high temperature was not the cause of coral bleaching, and issued an order that no Australian Government employee, including those at the Great Barrier Reef Marine Protected Area and the Australian Institute of Marine Science, was allowed to discuss any possible connection. 

The Australian authorities refused to allow me to present the global coral reef temperature data at their 1998 coral reef management conference in Townsville, during the height of the mass bleaching that affected most of the world’s coral reefs that year.

Hundreds of coral reef managers from all over the world, whose reefs were bleaching and dying at that very moment, were told instead that nobody knew the cause, except that it was NOT high temperature!

At the official press conference afterwards, Terry Done, leader of the national GBR monitoring efforts, was asked by a reporter “Dr Done, is it true that the Australian Government has ordered all government employees not to discuss any possible connection between global warming and bleaching?”. Terry, wearing a big grin, said “I couldn’t possibly comment on that!”.

The Australian authorities completely ignored these warnings, and now them seem to be surprised that what happened to the GBR was exactly what I had predicted would happen at these temperatures. 

The very Australian scientists who refused to admit that global warming was a threat to their coral reefs, now claim to have “discovered” the impacts, as usual by ignoring what was done before them. 

By change I’m back in Townsville 20 years later to give an invited keynote talk at the Global Asia Pacific Ecotourism Conference, and mentioned how we kept entire coral reefs in Maldives, Thailand and Indonesia alive with Biorock technology during severe bleaching events that killed more than 95% of the corals on nearby reefs.

But the Australian authorities still won’t allow us to do this in the GBR! Yesterday Cairns had record hot temperatures, and the bleaching season is fast approaching. 

The facts have long been in: we passed the global temperature tipping point for mass coral bleaching in the 1980s, and governments have been denying the facts for more than 30 years: http://www.globalcoral.org/we-have-already-exceeded-the-upper-temperature-limit-for-coral-reef-ecosystems-which-are-dying-at-todays-co2-levels/

Until we have intelligent and informed political leadership, we can expect no action to reduce atmospheric CO2 to rescue our planet’s life support systems in time to prevent the functional extinction of coral reef ecosystems, a capital crime against the environment that will take millions of years to undo. 

Yesterday’s rejection of the US national climate change report by the US president shows once again that when lies trump truth, the dark ages follow. 


Biorock brings corals back in Ambon

The corals of Ambon, in the Moluccas of Eastern Indonesia, were made famous by some of the greatest Natural Historians who ever lived.
 
In the 1600s Georg Eberhard Rumpf, better known as Rumphius, described hundreds of new species of Ambonese plants and marine animals, including corals, even though he could not see them because he was completely blind and described them by feeling the specimens with his hands. 
 
 
 
In the 1800s Alfred Russel Wallace, co-discoverer of the Laws of Evolution, was spellbound by the stunning variety of shapes and colors of corals completely covering the bottom of Ambon Bay.  
 
 
Even though he never could see them except looking over the side of a boat into the crystal clear waters, Wallace realized from that glimpse that there was as fantastic a world in the reefs as he found in the jungles, and longed to be able to dive like a fish and see them as close up as the birds, mammals, and insects he studied. And so had Charles Darwin. 
 
Portrait of Charles Darwin
 
That only happened when Prof. Thomas F. Goreau became the first diving marine scientist in the 1940s. 
 
Ambon was for centuries a major center of the spice trade. Greatly increased populations cut down the jungles along the shore. Mud, and later, sewage and plastic, polluted the bay and killed almost all the corals (D. Ontosari, P. T. Karissa, M. Tjatur, H. Lating, R. Sudharna, K. Astika, I. M. Gunaksa, & T. Goreau, 2015, Geotourism combining geo-biodiversity and sustainable development of tropical Holocene coral reef ecosystems: Comparison of two Indonesia eco-regions using Biorock technology, Proceedings Joint Convention Balikpapan HAGI-IAGI-IAFMI-IATMI).
 
Biorock Indonesia, the Maluku Fisheries Department, local fishermen, and students from Universitas Pattimura have been growing Biorock coral reefs in the muddy waters inside Ambon Bay that amazed Rumphius and Wallace back when the waters were transparent. 
 
This project, started by Komang Astika, Prawita Tasya Karissa, and Ruselan Sudharna, managed by Sandhi Raditya, and sponsored by Pertamina, has already stimulated settlement of new branching Acropora corals that had nearly vanished (see photos below). 
 
Here on Ambon nearly 30 years ago Muslims and Christians were killing each other, goaded by outside religious fanatics. Now in this place there are Biorock coral reefs shaped like a church and a mosque, side by side, to emphasize that the environment affects every single one of us, whether we realize it or not, and that we must all work together to regenerate it for the sake of future generations.
 
More Biorock reefs will be installed in the next few days.
 
Rumphius and Wallace would be delighted!
 
BIOROCK AMBON, November 18 2018, photos by Komang Astika and Sandhi Raditya
Acropora, Merulina, and Pocillipora

 

Euphyllia ancora
Acropora
Acropora
Acropora

 

Acropora

Coral growth after one month on new Cozumel Biorock reefs

These photos, taken by Torcuato Pulido Mantas in early July 2018, show typical examples of very healthy coral growth after just one month on new Biorock reefs in Cozumel, Mexico. The corals shown were naturally damaged and were rescued from dying when transplanted onto the Biorock reefs a month before. Around half the coral species now being grown are shown in these photos.

The growth and settlement of corals on the Biorock projects and control sites is now being studied by Torcuato Pulido Mantas, with the advice of Dr. German Mendez of the Cozumel Coral Reef Restoration Program and Dr. Tom Goreau of the Global Coral Reef Alliance.

The coral species shown below are: 1) Eusmillia fastigiata, 2) Porites astreoides, 3) Orbicella (Montastrea) annularis, 4) Agaricia agaricites, 5) Porites porites (front) with Agaricia tenuifolia (top), 6) Diploria labyrinthiformis, and 7) Meandrina meandrites.

More photos and video from these projects will be posted later as the project progresses.


Biorock Technology: A Novel Tool for Large-Scale Whole-Ecosystem Sustainable Mariculture using Direct Biophysical Stimulation of Marine Organism’s Biochemical Energy Metabolism

2018 International Summit on Fisheries & Aquaculture

Biorock Technology: A Novel Tool for Large-Scale Whole-Ecosystem Sustainable Mariculture using Direct Biophysical Stimulation of Marine Organism’s Biochemical Energy Metabolism

Biorock mariculture technology is a novel application of marine electrolysis, which grows solid limestone reefs of any size or shape in seawater, that get stronger with age and are self-repairing. Biorock reefs can be designed to provide habitat specific to needs of hard and soft corals, sponges, seagrass, fishes, lobsters, oysters, giant clams, sea cucumbers, mussels, and other marine organisms of economic value, or grow back severly eroded beaches at record rates. Biorock reefs, and surronding areas, have greatly increased settlement, growth rate, survival, and resistance to severe environmental stress from high temperatures, sedimentation, and pollution for all marine organisms observed. This allows marine ecosystems to survive otherwise lethal conditions and be regenerated at record rates even in places with no natural recovery. These remarkable findings seem to result from weak electrical fields poising the membrane voltage gradients all forms of life use to generate biochemical energy (ATP and NADP), causing enhanced growth of all species. Biorock technology provides a new paradigm for whole-ecosystem sustainable mariculture that generates its own food supplies, the antithesis of conventional mono-species mariculture dependent on external food inputs, whose wastes cause eutrophication that kills off surrounding subsistence fisheries. Potential applications include fish, crustacean, and bivalve mariculture, algae mariculture, pharmaceutical producing species, and floating reefs for pelagic fishes. The power requirements are small and can be provided by solar, wind, ocean current, and wave energy. The techniques are ideally suited for community—managed mariculture, if investment funding were available to subsistence fishing communities.

Biography

Thomas J.F Goreau was educated in Jamaican schools and hold degrees  from MIT, Caltech, and Harvard. President and founder of The Global Coral Reef Alliance, he has dived on coral reefs across the Caribbean, Pacific, Indian Ocean, and SouthEast Asia for more than 60 years. He has published more than 150 papers and written and edited books on scientific photography, marine ecosystem restoration, and soil fertility restoration. He is co-inventor of the HotSpot method for predicting coral bleaching from satellite data and of the Biorock method for regenerating marine ecoystems and eroding coastlines.


New Cozumel Coral Restoration project

Six spectacular new Biorock coral reefs have been installed in June by the Global Coral Reef Alliance (GCRA) and our local partners, Qualti SA, and the Cozumel Coral Reef Restoration Program (CCRRP), in Cozumel, Mexico, the world’s most popular diving destination.

 

The new projects are a short swim from Sand Dollar Sports, and are illuminated at night with blue and cyan LED lighting for night time divers and snorkelers. Thousands of people swim at this site every day, located on the west shore of Cozumel, between the cruise ship piers.

The six new Biorock projects were funded by Minecraft, one of the world’s most popular computer games, in conjunction of their launch of new “Minecraft Underwater Worlds”.

Biorock reefs can be built in any size or shape, and greatly increase the settlement, growth, survival, and resistance of corals and all marine life to severe environmental stresses such as high temperature, sediment, and pollution. Biorock reefs survive when all around them die during severe stress events, and they grow back reefs and severely eroded beaches at record rates even where there is no natural recovery. They are therefore the last and only hope to save coral reefs from runaway global warming, global sea level rise, pollution, and human greed.

The six new Biorock reefs in Cozumel are being planted with broken coral fragments rescued from dying by the Cozumel Coral Reef Restoration Program.

These reefs are shaped like Minecraft game characters, turtles, turtle eggs, and an Axolotl, Mexico’s most iconic wildlife species, a giant salamander that is nearly extinct from pollution and overharvesting for the aquarium trade and traditional purported medical uses. This was designed by high school students from Monterrey, Mexico.

Each structure is surrounded by Biorock coral reefs on all sides onto which the Cozumel Coral Reef Restoration Program is transplanting severely injured broken corals rescued from tourist diving reefs.

Cozumel is the most popular diving destination in the world, but the coral reefs there, like those all around the world, have been steadily dying back because of global warming, algae overgrowth caused by sewage pollution, new diseases, physical damage caused by divers, and cruise ship propellers stirring up sediments.

The new Cozumel Biorock coral reef regeneration projects are a first step to bring back Mexico’s vanishing corals and fish populations and build a better and more sustainable future.

As the corals grow at exceptional rates, fishes and all forms of marine life will swarm around them. Coral transplantation has already started and will continue over the years to come. They will be spectacular at night, lit by blue and cyan LEDs, which attract swarms of fish and plankton.

GCRA, CCRRP, and Sand Dollar Sports will be posting many spectacular photographs and videos of these projects over the years to come. Please look at them on our web sites and better yet, come to Cozumel and see them for yourself! People who don’t see our spectacular coral reef restoration projects simply can’t believe that they are possible!

LINKS:
Cozumel Coral Reef Restoration Program
Qualti
Sand Dollar Sports


Agung Prana – In Memoriam

 

The Global Coral Reef Alliance is deeply saddened to report the loss of our great friend and leading Balinese partner, Agung Prana.

Bapak Agung Prana’s constant support for Biorock projects over 20 years made Bali the world center of coral reef regeneration.

The photo below shows a photo of Agung Prana held by his son, Bagus Mantra, surrounded by the leaders of the Biorock Bali team.

https://baliexpress.jawapos.com/baliexpress/read/2018/07/07/86403/pionirpariwisata-dan-pelestari-terumbu-karang-berpulang

(translated by Sandhi Raditya)

I Gusti Agung Prana, age 70, passed away Friday, July 6th, 2018 at the Wing International Sanglah Hospital Bali, after a long illness of cancer. Mr. Agung Prana, our beloved father was born July 12th, 1948 in Mengwi, Bali. He is survived by his wife, I Gusti Ayu Arini, one daughter, I Gusti Agung Desi Pertiwi, and two sons, I Gusti Bagus Mantra and I Gusti Ngurah Kertiasa.

He was a dedicated man who served his life for Bali Tourism since the late 60s. He has had a chance as Vice President of Bali Tourism Board and Chairman of the Association of Indonesia Travel Agencies (Bali Chapter). His last 3 decades was devoted to sustainable eco-tourism in Pemuteran, North Bali restoring degraded marine ecosystems through biorock reefs method. He was a founder of Karang Lestari Foundation and worked together with the spirit and culture of the local people, changing poor areas into a high visited tourist destination. This brought Pemuteran gained many international and national awards such as Tourism for Tomorrow Awards – Finalist (2018), The Equator Prize of UNDP (2017), Best Sustainable Tourism Development of Indonesia Tourism Ministry (2012), Tri Hita Karana Award (2011), PATA Gold Award (2005), and Best Underwater Ecotourism Project of SKAL International (2002).

On behalf of family members, Mr. Bagus Mantra apologized for all the mistakes of his father. He conveyed that funeral services (Plebon ceremony) will be conducted on Saturday, July 21st, 2018 at the Jero Gede Bakungan, Umabian, Peken Blayu Marga, Tabanan Regency. Friends may call at the funeral home Saturday morning from 7 to 9 a.m. or one hour prior to the services.

More details to follow.


Spectacular Biorock coral growth videos

 

Spectacular coral growth on Biorock is seen in the three videos linked below.

Pemuteran, Bali

This video shows Biorock reef growth in Pemuteran, Bali at a site that had been almost barren of corals and fishes when the Biorock projects began 15 years earlier.

Gili Trawangan, Indonesia

This video shows the installation of a new Biorock reef in Gili Trawangan, Indonesia, and the growth of corals on it one year later:

Curaçao

This video shows phenomenal growth of staghorn corals in Curaçao shown by time lapse photos:

To see Biorock results for longer time scales (11 years) please look at: https://www.youtube.com/watch?v=Rx8TV9Kd0ns


Government of Philippines to shut down Boracay, the country’s top tourist attraction, due to pollution

GCRA assessed coral health, algae, and water quality all around Boracay in 1997 and 2007, and made recommendations on tertiary sewage treatment to recycle waste nutrients on land and keep them off the reef. The first report was banned by the Minister of Tourism, and both were ignored.

Read GCRA 2007 paper Boracay Environmental Restoration, Water Quality, and Sustainable Energy: Current Situation and Future Prospects

Read GCRA 1997 paper  Water Quality and Coral Reef Health In Boracay, El Nido, Isla Verde, and Balicasag, Philippines

 

Watch BBC News Video – Boracay: Paradise islanders fear tourist shutdown

 

Article published on April 5th 2018 in the BBC News site
Original article @ bbc.com/news.

Philippines to temporarily close popular tourist island Boracay

5 April 2018

Image: REUTERS
Boracay is popular with foreign and local tourists
 

The Philippine island of Boracay will be closed to tourists for six months following concerns of damage to its once pristine shores.

A spokesperson for President Rodrigo Duterte said the closure would begin on 26 April.

Earlier this year Mr Duterte said Boracay was turning into a “cesspool” and threatened to shut it down.

The island, known for its white-sand beaches, attracted nearly 2 million visitors last year.

The decision has prompted concern for the thousands of people employed in Boracay’s busy tourist trade.

The island is home to around 500 tourism-related businesses, which drew in annual revenue of $1.07bn (£760m) last year. The government said affected companies will receive financial aid.

It’s not clear how the shutdown will be implemented, though the department of trade and industry had earlier proposed closing the island down in phases, saying a total shutdown would be detrimental to businesses and livelihoods.

Damage fears

The move follows growing concern over the island’s environmental health.

Officials had warned businesses had been releasing wastewater into the surrounding waters.

In February, Mr Duterte condemned the island’s hotels, restaurants and other tourist businesses, accusing them of dumping sewage directly into the sea.


Image: GETTY IMAGES
A mountain of trash sits on a hillside on Boracay

“I will charge you for serious neglect of duty [for] making Boracay a fishpond or a sewer pool,” Mr Duterte said at the time.

“Either [you] clean it up or I will close it permanently. There will be a time that no more foreigners will go there.”

 


Biorock electrical fields inhibit shark biting

Article by Diana Crow published on April 5th 2018 in the Sierra Club magazine
Original article @ sierraclub.org.

Electric Shark Boogaloo

Is there such a thing as an electric fence, but for sharks?

PHOTO BY ISTOCK | WHITCOMB RD

BY DIANA CROW | APR 5 2018

Marine biologist Marcella Pomárico Uchôa stood at the edge of a small boat in the Bimini region in the Bahamas, watching a floating piece of white PVC pipe, rigged with wires and a bag of minced meat, bob up and down with the waves. It wasn’t long before the sharks arrived.

The sharks weren’t shy about their interest in the minced meat. They charged toward it at full-speed, only to swerve away at the last moment. In contrast, the Bermuda chubs and bar jacks swam right up to the rig and grabbed a snack without hesitation. Something was changing the sharks’ behavior.

The two species Uchôa’s study focused on—bull sharks (Carcharhinus leucas) and Caribbean reef sharks (Carcharhinus perezi)—can sense electric fields in the water. Their electrosensory organs—called the ampullae of lorenzini—are sensitive enough to detect the electric activity in their prey’s nervous systems, allowing sharks to lunge at their prey blind.

As Uchôa and her colleagues reported in the journal Animal Biology last year, the wire and PVC rig emitted a low voltage electric current that seemed to befuddle the two species of shark. Ordinary fish—without an electromagnetic sixth sense—didn’t seem to notice the electricity at all.

As far as the observers on the boat could tell, the sharks weren’t hurt by the electric field. “Sharks just avoid them because it’s confusing,” explains the study’s co-author Thomas Goreau of the Global Coral Reef Alliance, an organization that restores coral reefs by building artificial electric reefs.

This confusion could open up new markets for Goreau’s coral reef restoration business. Back in 1987, Goureau was writing coastal zone management plans for hotels and fisheries in Jamaica when he met an architect and inventor named Wolf Hilbertz. Hilbertz had been developing construction materials for underwater buildings when he found that electrically charged metal attracts dissolved minerals in seawater. Over time, these minerals build up, forming a material similar to concrete–or to the calcium carbonate of coral reefs.

The two began designing synthetic electric reefs—which they called “Biorocks”—meant to slow coastal erosion and provide habitat for coral reef species in areas that had seen massive coral reef damage. About 400 were installed in over a dozen countries including off the coast of Panama, the Saya de Malha bank near the island nation of Seychelles, and Gili Trawangan in Indonesia. Most are close to shorelines and draw from the nearby islands’ power grids, but Goreau and his colleagues have been experimenting with using renewable power sources such as solar panels and wave power generation.

In thirty years, Goreau had never seen a predatory shark hanging out near a Biorock reef. Then, while giving a talk at the University of the Basque Country in Spain, he met Uchôa, who was a marine science grad student at the time. The two began looking into whether Goreau’s experience could be backed up by real-world experiments, and whether Biorocks could function sort of like underwater electric fences, steering sharks away from popular diving areas.

Shark bait experiment in progress. Photo courtesy of Marcella Pomárico Uchôa.

Using sharks’ electromagnetic sense to direct shark traffic away from humans isn’t a new idea. Several electricity-emitting “shark-repelling”products–most of them wearable or attachable to surf boards—are already on the market. Whether these electromagnetic shark deterrents actually work is another question. “It depends on what you mean by working,” says marine biologist Charlie Huveneers of Flinders University in Australia. “If you’re asking whether they would stop or protect people all of the time in 100% of situations, then no, they don’t work. If you’re asking whether they have an effect on the behavior of sharks, then yes, they do work.”

Shark deterrent field tests by academic marine biologists—who are independent of the deterrent-making companies—have found that those effects can vary quite a bit. Sometimes, the sharks seem to hesitate in the presence of an electric field but go in for the kill anyway. Sometimes, they don’t go for the bait but stay within a few meters of the boat. The effects differ between species, and a few people have even been bitten while wearing electromagnetic shark “deterrents”.

Ideally, says says shark biologist Ryan Kempster of the University of Western Australia, the electrical field produced by a shark deterrent should be tailored specifically to the size and species of the shark in question, because every species detects and responds differently to electric fields of varying strengths and frequencies.

“The problem with shark deterrents,” adds says Huveneers, “is that there’s no real regulation in terms of what the deterrents need to be able to do to be called ‘deterrent’. And manufacturers can make a lot of claims about the device that they’re selling without ensuring the veracity of those claims,”

If Biorocks work to keep sharks away from beaches that are popular with divers, such a scenario could be beneficial to sharks, since they are more likely to be hurt or killed by humans than the other way around. But Goreau freely admits that more research is needed. The PVC pipe rig in Uchôa’s experiment emitted an electric field very similar to that of a Biorock reef but not identical. In the majority of the experiments, sharks didn’t swerve from the PVC pipe rig until they were just a few feet away from the reef, which could mean that Biorock placement would have to be strategic to prevent sharks from swimming through areas that the field doesn’t reach to.

Goreau admits that it’s possible that no one has seen large predatory sharks swimming around Biorock reefs simply because there are so few large sharks left worldwide. Rays and nurse sharks, which can also sense electricity, live on and near Biorocks and do not appear to be affected by the Biorocks’ electric fields. It is possible, though, that the electrical field could have some effect on the behavior of sharks, rays, and skates that is not readily apparent. That alone is reason to be cautious, according to Uchôa.

In the meantime, Goreau remains excited. Students monitoring the Biorock reefs in Indonesia have noticed large numbers of young fish swimming around the artificial reefs. Because sharks, rays, and skates are the only fish known to have electrosense, this raises the question of what is bringing them there. “We do get enormous recruitment of larval fish when the power is on, much more so than when the power is off,” says Goreau. “There’s an enormous need to expand this work.”