Frankencorals – In Science Magazine

The Frankenword glossary (Science: 359:154, 2018) omits Frankencorals! It covers death-dealing Frankentechnologies that alarm the public, but life-giving electrical technologies are completely excluded. We’re shocked: none of your examples involves electricity like the Global Coral Reef Alliance’s Biorock electrolysis technology, the sine qua non for genuine membership in the Frankenclub!

Despite widespread electrophobia, Biorock’s electrifying results are entirely beneficial: greatly increased settlement, growth, survival, and resistance to stress of all marine organisms examined, plants and animals, mobile or sessile (T. J. Goreau, 2014, Electrical stimulation greatly increases settlement, growth, survival, and stress resistance of marine organisms, Natural Resources, 5:527-537 http://dx.doi.org/10.4236/nr.2014.510048). Instead of convulsions and rigor mortis, Biorock corals uniquely survive severe high temperature bleaching events that kill more than 95% of corals around them, and quickly smile back at us because the low currents used are in the natural range and show no negative effects, except for predatory sharks, which get confused and won’t bite food right in front of them (M. P. Uchoa, C. C. O’Connell, & T. J. Goreau, 2017, The effects of Biorock-associated electric fields on the Caribbean reef shark (Carcharhinus perezi) and the bull shark (Carcharhinus leucas), Animal Biology, DOI 10.1163/15707563-00002531).

Biorock is the only marine material construction material that grows solid self-repairing structures 2-3 times harder than concrete (T. J. Goreau, 2012, Marine electrolysis for building materials and environmental restoration, p. 273-290 in Electrolysis, J. Kleperis & V. Linkov (Eds.), InTech Publishing, Rijeka, Croatia), and regenerates severely eroded beaches at record rates (T. J. F. Goreau & P. Prong, 2017, Biorock reefs grow back severely eroded beaches in months, Journal of Marine Science and Engineering, Special Issue on Coastal Sea Levels, Impacts, and Adaptation, J. Mar. Sci. Eng., 5(4), 48; doi:10.3390/jmse5040048), rapidly grow beach sand from calcareous algae, restore seagrasses and salt marshes under severe stress where all other methods fail, keep whole coral and oyster reef ecosystems alive when they would die, and grow them back at record rates where there is no natural regeneration (T. J. Goreau & R. K. Trench (Editors), 2012, Innovative Technologies for Marine Ecosystem Restoration, CRC Press). Biorock Indonesia and our partners are about to start Biorock mangrove and Nipa palm restoration of illegally deforested Borneo mangroves for orang utan sanctuaries and to sequester atmospheric CO2 as peat in what we expect to be the single most cost-effective carbon sink.

The reason marine life gets a charge from the Biorock method is that we operate in the beneficial range that galvanizes natural biophysical membrane voltage gradients all forms of life use to make biochemical energy, so they don’t need to use up to half their energy pumping protons and electrons backwards to maintain membrane voltage gradients, whose collapse means death (as caused by high voltages and currents). That’s why we call it electro-tickling, the antithesis of electrocuting high voltage currents everybody is monstrously terrified of!

Published in Science Magazine eLetter 359:154 


Panama Canal Port Dredging That Damages Coral Reefs Stopped By Legal Action

The lawsuit by Centro de Incidencia Ambiental (CIAM) against dredging that would damage coral reefs in front of the Panama Canal (based on GCRA reef surveys with the Galeta Marine Laboratory) was admitted by Panamanian Courts on 8 January 2018. This means that the construction works in the port must be suspended while the Court provides a final merits decision. Because we filed an amparo de garantías action, we argued infringement of the constitutional rights to a healthy environment, sustainable development and health. Because of these arguments, once this type of lawsuit is admitted it immediately suspends the legal effects of the resolution that approved the project’s EIA until a final decision is made by the Supreme Court.

Please read more on the news that was published on January 29 in Panama’s leading newspaper, La Prensa: 


Managing Ornamental Coral Trade in Indonesia

A Case Study in Bali Province during the last seven years, a thesis dissertation at Xiamen University, Fujian, China by Sandhi Raditya Bejo Maryoto, Biorock Indonesia Maluku Project Officer, covers the rapid expansion of coral exports for the aquarium trade in Indonesia in general, and Bali in particular.

Indonesia plans to end export of wild corals and switch to 100% export of verifiably cultured corals by 2020. With the banning of coral exports by the Philippines, and most recently by Fiji (BBC Article), Indonesia now has a near-complete monopoly on global aquarium coral exports, so now would be a good time for Indonesia to accelerate the phase-out of wild coral exports.

Abstract

The world ornamental coral trade continues to grow as the result of increasing demand for aquarium industries. Indonesia as a major exporter has distributed corals worldwide with the USA as the biggest market, followed by 87 other importing countries. Ditjen KSDAE (Directorate General for Conservation of Natural Resources and Ecosystem) of MoEF (Ministry of Environment and Forestry) and P2O-LIPI (Research Center of Oceanography – The Indonesian Science Institution) was mandated as a management and scientific authority, respectively, in this curio trade management in Indonesia which is highly referred to CITES provisions. The trade entangles numbers of fishermen, middlemen, wholesalers, and coral companies in advance of exportation. As reported by CITES, a total of 25,569,984 corals were traded from Indonesia in 1985 until 2014. More than 49% (12,719,104 pieces) of all corals were exported to the USA in the same period. As the trade directed to be more sustainable, cultured corals grew steadily during the last decade. BKSDA Bali (Conservation and Natural Resources Agency of Bali Province) also reported similar results in regional coral exportation from Bali. There were 9,583,821 pieces of ornamental corals, mostly were cultured corals, traded by coral companies based in Bali during 2010 – 2016, with annual growth rate of 19.06%. It constituted almost 60% of total Indonesia exportation and was carried out by 25 coral companies. Existing management measures e.g. quotas, licensing system, and spatial management through no-take zones have been put into effects despite still requires various improvements. More comprehensive studies and scientific data are therefore essential in decision making process to set out adaptive management strategies and thus ensuring sustainable coral trade.

Managing Ornamental Coral Trade Indonesia – Sandhi


Dredging threatens exceptional coral reefs in front of Panama Canal

An exceptionally healthy coral reef directly in front of the Panama Canal breakwater is threatened by dredging for the new Isla Margarita Port Terminal. Unless strict measures are taken to prevent mud from getting out of the Eastern Channel onto the adjacent coral reef, Panamanians stand to lose this habitat that is part of their national heritage.

Environmental impact assessments made for the port development only considered dead previously dredged areas inside the breakwater, and completely ignored the healthy coral reefs less than a hundred meters away, connected by an open channel to the dredging and landfill sites.

A survey by the Global Coral Reef Alliance (GCRA) and the Galeta Marine Laboratory of the Smithsonian Tropical Research Institution (STRI), at the request of Centro de Incidencia Ambiental (CIAM), found a healthy coral reef with high living coral cover right in front of Isla Margarita and the eastern end of the Panama Canal breakwater. These reefs are not mentioned anywhere in the port’s Environmental Impact Assessment (EIA): the EIA mentions only dead habitat in the area, which would not be affected from dredging nearby. The living coral reefs are only about 100 meters away from the Port dredge and filling operations.

This reef is close to the Isla Galeta Protected Area, and strong measures are needed to protect the highly vulnerable corals from suspended sediments.

This report, and the photos and video attached to it, describes the health status of this extraordinary reef (figures below) and the measures needed to monitor and protect it.

Proposed dredging plans at Isla Margarita, Panama Canal
Port plans. (Image courtesy of the EIA.) Diagonal striped area will become part of the port facility. Seafloor habitat to be filled in and turned into land is shown in stipple.
Proposed port lies right next to healthy coral reef in front of Isla Margarita, just outside the Panama Canal entrance.
The port lies right next to healthy coral reef in front of Isla Margarita. The photos and video in this report were all taken inside the coral reef area shown in blue, just across the breakwater from the area that will filled in for the expanded port.

The full report, with photographic and video documentation can be seen below.

Isla Margarita, Panama image compilation

Isla Margarita, Panama GCRA survey video

After the survey of Isla Margarita reef was done, the project proponents announced without warning that they had made a mistake: they needed 16 times more dredging material to complete the project than they had projected, and most of the required sand for the filling operations would be dredged in Nombre de Dios. Unfortunately, Nombre de Dios represents the center of the best shallow fringing coral reef flats in the entire Caribbean and is a site of global biodiversity importance.

Nombre de Dios Bay. The shallow reef flat of this bay is the best developed in the entire Caribbean.
Port plans. (Image courtesy of the EIA.) Diagonal striped area will become part of the port facility. Seafloor habitat to be filled in and turned into land is shown in stipple.

 


Planetary Pact with Mother Earth still overdue in 2018

 
Comments on the following article: Regenerating soil and biomass carbon can reverse global climate change posted on the Soil Carbon Alliance website.

 

Coral reefs are already the first victims, we exceeded the global bleaching temperature tipping point threshold in the 1980s, there is now very little time left to save them. 
— Tom Goreau
 
Stephen Jay Gould (my advisor at Harvard), The Golden Rule, 1993 , phrases in brackets inserted for clarity.
 
“By what argument could we [humanity], arising just a geological microsecond ago, become responsible for the affairs of a world 4.5 billion years old, teeming with life that has been evolving and diversifying……Nature does not exist for us, had no idea we were coming, and doesn’t give a damn about us…..
 
We can surely destroy ourselves, and take many other species with us…..On geological scales our planet will take good care of itself and let time clear the impact of any human malfeasance [but it will take several million years]……
 
If we all treated others as we wish to be treated ourselves, then decency and stability would have to prevail. I suggest we execute such a pact with our planet. 
 
She holds all the cards, and has immense power over us – so such a compact, which we desperately need but she does not at her timescale, would be a blessing for us and an indulgence for her. 
 
We had better sign the papers while she is still willing to make a deal. If we treat her nicely she will keep us going for a while. If we scratch her, she will bleed, kick us out, bandage up, and go about her business at her own scale…..
 
The Earth is kinder than human agents in “the art of the deal”. She will uphold her end; we must now go and do likewise.”

2017 GCRA Activities

 

GCRA Wishes a

Happy New Year 2018

Please support the GCRA Year-End
Fund Raising Campaign

2017 GCRA Yearly Report

Thomas J. F. Goreau, PhD
President, Global Coral Reef Alliance

Corals continued dying around the world in 2017 from global warming, pollution, and disease, and GCRA continued to show policymakers and the public the severity of the damage and to pioneer regenerative solutions. GCRA will accelerate its efforts in 2018.

GCRA’s Indonesia coral reef restoration projects continued to lead the world in 2017. Our Balinese partner, Yayasan Karang Lestari, recipient of the 2012 United Nations Equator Award for Community-Based Development, was selected for special honors at the 2017 World Ocean Day Event at the UN Oceans Conference for turning their village from the poorest in Bali to one of the most prosperous by restoring their coral reef. Last year, corals on Biorock reefs in Indonesia survived when severe bleaching killed almost all the corals around them, and Biorock reefs grew back a severely eroded Sulawesi beach in just a few months by growing corals and seagrasses in front of Pulau Gangga Dive Resort. Biorock Indonesia teams continued to manage around 300 Biorock reefs, start many new ones, and train new teams to start projects all across Indonesia. See 2017 Biorock Indonesia training workshop clips below:

Biorock coral restoration projects were maintained at several locations in the Panama Caribbean. One of the finest coral reefs left in the Caribbean, with exceptionally large ancient corals, was studied in the Guna Comarca (Indigenous Territories). Another reef with high live coral cover was found right in front of the Panama Canal breakwaters, and efforts are underway with local environmental groups to save this reef from being killed soon by dredging for a container port.

The first new Biorock reef restoration projects in Jamaica in 25 years were started near the last ones. A coral nursery growing elkhorn coral was established. This coral used to form huge forests at this site, but all vanished decades ago. The project is very small because of the tiny amount of coral now available to propagate, but will expand quickly as it grows rapidly. The best reef left in Jamaica was filmed, and efforts re-started with the local community to get it protected and managed locally.

New coral reef restoration projects were developed for early 2018 with local partners in Grenada, Mexico, Indonesia, Panama, Bahamas, and Vanuatu. These will incorporate new advances in Biorock Technology, and feature use of CCell wave energy devices to protect eroding shores and grow beaches back. See announcement

GCRA researchers published a paper in the Journal of Animal Behavior showing electrical fields around Biorock structures inhibit sharks from biting but have no effect on other fishes. Available here. The tiny electrical field confuses sharks so they don’t bite. Biorock coral reef restoration projects can help protect people and sharks from harming each other.

Biorock oyster and saltmarsh restoration projects in cold waters continued at our toxic waste sites in New York City, and a short experiment was done to test applicability in San Francisco Bay.

Research projects were started with the University of Aalborg in Denmark, and the University of the Basque Country in Spain focusing on the chemistry, physics, and engineering properties of the materials produced by the Biorock process.

Tom Goreau spoke on large-scale community-managed marine ecosystem restoration at the United Nations Oceans Conference in New York, and at the United Nations Climate Change Conference in Bonn. His paper on the factors controlling the rate of CO2 drawdown to reverse climate change was published in the Proceedings of the UN Food and Agriculture Organization Global Conference on Soil Organic Carbon in Rome. He also participated in international conferences on agricultural regeneration in Mexico, on regenerative development to reverse climate change in London, and on re-greening of the Sinai Desert in the Netherlands.

GCRA filmed an interview by Tom Goreau with Professor Robert Kent Trench, the world’s top expert on coral symbiosis, looking at the oldest coral reef photographs from Belize and discussing the changes. Tom Goreau featured in two full-length documentary films that are now in final production stages for release in 2018. One film directed by Marcy Cravat will be on soil carbon and reversing climate change, the other by Andrew Nisker will be on environmental impacts of golf course chemicals. A new documentary was funded to start filming in 2018 on the historic GCRA Coral Reef Photograph Collection, the world’s largest from the 1940s, 1950s, and 1960s, and the long-term changes they document.

GCRA researchers looked at a major collection of nearly a thousand corals from the Great Barrier Reef, made 50 years ago in 1967, but packed away in a museum without ever being identified or studied, and is assisting getting the corals documented and identified, along with the major taxonomic collections of Caribbean corals.

GCRA proudly announces the GCRA Coral Classics Series, with the first volume to be posted in early 2018 being A STUDY OF THE BIOLOGY AND HISTOCHEMISTRY OF CORALS, the foundational work of coral biology and coral reef ecology. This masterpiece by Thomas F. Goreau, the world’s first diving marine scientist and founder of modern coral reef science, was his 1956 Yale University Ph.D. thesis. Although it is the essential starting point for all serious students of corals and coral reefs, it has long been unavailable. The GCRA publication includes all the original figures and photographic plates from the classic study of coral anatomy, ecology, and physiology available, newly re-edited individually for clarity.


Governments can’t say they weren’t warned that coral reefs can take no further warming!

Not 2 degrees, not 1.5 degrees, not even 1 degree!
 
That’s why the United Nations Framework Convention on Climate Change, where I will speak tomorrow about large-scale regeneration of marine ecosystems to reverse global climate change, is a death sentence for coral reefs as it now stands, because governments have chosen to sacrifice coral reefs, despite the scientific evidence that they are the most climatically vulnerable ecosystem!
 
The documents below show that the UNFCCC was fatally flawed from its conception, and needs to be strengthened if it is not to prevent global warming-caused extinction of coral reefs and flood low lands where billions of people now live.
 

TECHNICAL BRIEFING FOB INTERGOVERNMENTAL NEGOTIATING COMMITTEE MEETINGS UNITED NATIONS.
NEW YORK. MAY 7 1992

MEMORANDUM: CAN WE AVOID ECOSYSTEM DAMAGE FROM CLIMATE CHANGE?

TO: INC NEGOTIATORS
FROM: Dr. Thomas J. Goreau, President, GCRA

1. IPCC projections for future climate change are based on assumed sensitivities of temperature and sea level to carbon dioxide increase that are 1O times less, and 1250 times less respectively, than have actually taken place in the past. The last time global temperatures were 1-2 degrees C above today’s values, sea level was 5-8 meters higher, compared to the 0.1 to 0.3 meters projected by IPCC. These observed changes imply that current projections may seriously underestimate potential long-term rises in sea level and temperature.

2. Coral reefs around the world are bleaching from heat shock stress and corals are increasingly dying as episodes increase in frequency and intensity. Bleaching took place after “hot spots”, regions of ocean temperature 1 degree C above normal, hit reef areas during the hottest months. Mass bleaching was unknown before the 1980s. Reefs which have escaped hot spots by luck are certain to be damaged if they continue. Major components of tropical marine biodiversity, fisheries, tourism, and shore protection are at serious risk from global warming.

3. Halting global warming requires stabilization of C02 concentrations in the atmosphere, not just stabilizing emissions. This requires both reduced supply of C02 to the atmosphere from fossil fuels and increased removal of C02 by protecting remaining forests and reforesting currently degraded areas. Simultaneous supply and demand-side measures are needed. Rapid global increase in biomass is essential because this is the only practical measure which can significantly reduce C02 concentrations within decades. Even drastic emissions reductions require over a century to have major impacts on C02 levels. Reforestation and increased energy efficiency together can affordably stabilize C02, providing an interim measure until non C02-producing energy sources replace fossil fuels.

4. Forest protection is not a sectoral issue. Boreal forests are the most efficient carbon sinks because they hold on to carbon for the longest in wood and soil. Tropical forests are inefficient, they hold on to carbon for a short time before returning it to the atmosphere. However, increased tropical forest cover is also critical because it is the most important ecosystem for reducing the atmospheric lifetime of C02 and the total heat each additional molecule adds to the atmosphere. Global warming will make all forests less efficient carbon sinks. Oceans are an extremely inefficient sink, unless they are dangerously polluted.

5. The Convention at present Is Inadequate to protect coral reefs from climate change. It requires stronger commitments to reduce atmospheric greenhouse gas concentrations. Global, long-term, wholistic thinking Is needed on all sides now before it is too late to save and restore reefs and forests.

 


CCell Provides the Energy to Save Coral Reefs

British wave energy start-up Zyba has teamed up with Biorock, which builds artificial coral reefs with the hope of simultaneously providing energy and coastal protection for islands. It has developed a new curved technology, the CCell, with a lightweight design that allows it to capture a greater amount of the ocean’s awesome power than its competitors.

Working with Biorock – both the company and technology name – Zyba hopes to provide island communities with a new source of clean and reliable energy. The power will also be used in the construction of coral reefs, which provide important coastal protection and bustling ecosystems for marine wildlife.

Hidden among the reefs, the CCells will take advantage of the total theoretical global wave energy potential of 32 petawatt (PW) hours per year. So far, no large-scale application for wave technologies has been successful and so Zyba is championing a smaller-scale approach. The power it creates is designed to enter the grid network and work alongside other renewable sources.

Symmetric vs asymmetric wave energy devices

The concept of the CCell arose from the company’s founder, William Bateman, asking a simple question: “The energy in the ocean leads from the open ocean towards the shore, so it’s an asymmetric problem,” he says. “All I fundamentally did was question why are people making symmetric devices.

“I never meant to start a business in wave energy but I was looking at their devices and they were all symmetric, so they were either round or they were flat.”

Bateman went to University College London in 2012, where he asked friends to test a curved panel against a flat one. The results came back vastly in favour of a curved panel, which moved 40% more than the flat one, based on wave motion. As testing continued, researchers showed that as the wave hits the face of the panel, the curved shape forces the energy towards the central core where it could be collected. Additionally, the shoreward face of the panel is subject to less stress than a flat panel because the convex shape cuts through the water smoothly, reducing the risk of the panel becoming damaged in rough weather.

From this point, the project snowballed into Zyba and the patented CCell technology. With prototypes and testing complete, the final CCell was made comprising a glass and carbon fibre composite, making it light, flexible and, importantly, corrosion-resistant to increase its lifespan in seawater. There is only one moving part in each of the modular units and it has the highest known power-to-weight ratio of any wave device.

A symbiotic relationship protecting reefs

Zyba aims to tackle energy problems that large sources, such as offshore wind, cannot. “We have really moved away from using wave power for grid-scale electricity generation in the short term, but instead really trying to carve out a niche where wave energy is unique and actually has a significant intrinsic benefit,” says Bateman. “That’s really come about in the last six to nine months. Our focus at the moment has really been on coastal protection using a combination of the CCells and our partner’s technology, which is called Biorock.”

Biorock has been developed over the last 30 years by Professor Wolf Hilbertz, who died in 2007, and Dr Tom Goreau, as a way to grow artificial concrete. Biorock uses electrolysis to create a limescale-like substance by attracting the minerals in seawater. The rock this creates grows incredibly fast, as much as several centimetres a year, and is incredibly strong.

“The biggest single challenge for Biorock has always been its thirst for power at sea, conversely, we’re coming into a market where we are generating this power at sea and we need to get it to shore,” explains Bateman.

The companies have thus formed a partnership that allows them to build artificial concrete that protects coastal areas, while bringing in revenue from renewable energy production. “By collaborating with Biorock we are developing a symbiotic relationship in which we provide them with the power that they need,” says Bateman. “Equally, we can position our device where Biorock is growing a reef, so they are providing protection and fundamentally mass which helps to keep our unit in position.”

Clean and cool energy, despite challenges

As a start-up, Zyba’s main challenge throughout development has been financing. “For a physical product, where you have to do lab testing or actually offshore deployments, the costs are relatively high,” says Bateman. “When you’re doing the research and testing, you don’t really have time to be applying for funding, and then you get to the end of one round of funding and you have to stop and think, where am I getting the next bit? Obviously, you try to overlap them but often the funding doesn’t overlap so you do spend a lot of time and concern on how to grow in a sensible way.”

However, increased recognition for the technology over the past year has led to greater opportunities. Zyba was chosen to be part of the Clean+Cool Mission, organised by Long Run Works and sponsored by Innovate UK and the Department of International Trade it connects start-ups with investors in Silicon Valley, California, and allows entrepreneurs to share and develop ideas.

“Earlier this year we were selected alongside a group of 19 other companies to represent the greatest and the best of UK clean tech,” says Bateman. “It’s really interesting talking to the people over there because their attitude to start-ups is very, very different to what we see in the UK. It’s almost like everyone has a start-up, everyone’s got something going on in their garage and it’s all very chaotic.”

The trip encouraged the Zyba team to work on making changes in big increments by targeting smaller savings, leading to a focus on the nitty-gritty of the supply chain. “We originally thought that we’d manufacture the devices in the UK because the tooling behind the construction of our composite paddles was one of the major costs,” says Bateman. “Over the last six months we’ve actually been able to drive down the cost of our tooling for our relatively small device, from about £50,000 down to almost £2,500. The cheaper tooling is actually a better product – it’s a better module than the one we’d been quoted £50,000 for.”

Following Clean+Cool, Zyba decided to ship flat pack paddle moulds instead of the paddles themselves. It will provide local craftsmen, particularly yacht builders who are used to the required composite materials and methods, with the moulds and tools to make the CCell close to where it will be installed. This will help reduce the cost of the CCell, as well as supporting local communities.

Connecting wave energy to the grid

Zyba hopes the first CCell will be running offshore next year. “We are working really hard to get a row of devices installed just off the coast of Mexico,” says Bateman. “Hopefully by January, at the latest March, next year, it’ll be installed. What’s constraining us at the moment is overcoming some of the regulatory hurdles.”

CCells will be positioned along the coast of the island of Cozumel, starting with just one module. “The vision is that you would install one just to start with, just to make sure that you understand the local conditions and everything is correct, and then in the following years install in a line of devices along the shore,” explains Bateman.

Energy will then be transported underground to the island, where it will enter the grid system and work alongside other power sources. “Give or take 10%-20% of the energy that we generate will be needed to grow the Biorock, and the rest of that power we can then provide as an export to shore,” says Bateman.

The CCell could help provide clean, renewable power for small island communities, while protecting the coast and the underwater environment from the ocean. It’s a technology that kills two birds with one stone, and showcases a lot of potential on a small scale.

CCell: the energy to save coral


The Original 1991 Geotherapy Proposal to Reverse Global Climate Change

To: The United Nations Conference on Environment and Development (the parent of the UN Framework Convention on Climate Change)

From: R. Grantham, H. Faure, T. J. Goreau, T. Greenland, N. A. Morner, J. Pernetta, B. Salvat, & V. R. Potter

Date: October 16 1991

This paper is the first outline of the global program of Geotherapy needed to regenerate the earth’s natural biological climate regulatory systems and reverse climate change.

It was intended as a guide to negotiators at the United Nations Framework Convention on Climate Change, signed at UNCED in Rio de Janeiro in 1992.

It was the work of an international team of leading climate change and environmental scientists, at the First Conference on Geotherapy, held in Lyon, France, 14–17 May 1991.

The Geotherapy program lays the basis for global sustainable strategies of regenerative development needed to reverse climate change.

It corrects the fundamental accounting errors in UNFCCC, which make it intrinsically unable to reach its own goal unless it is strengthened to be scientifically-sound.

Sadly, it seems we have made no progress getting governments to understand the fundamental issues and solutions since 1991!

As posted on the Soil Carbon Alliance website:

The Original 1991 Geotherapy Proposal to Reverse Global Climate Change

 


Biorock Electric Reefs Grow Back Severely Eroded Beaches in Months

marine science and engineering

Biorock Electric Reefs Grow Back Severely Eroded Beaches in Months

Thomas J. F. Goreau 1,2  and  Paulus Prong 2,3

Global Coral Reef Alliance, 37 Pleasant Street, Cambridge, MA 02139, USA
Biorock Indonesia, Bali 80361, Indonesia
Pulau Gangga Dive Resort, Sulawesi 95253, Indonesia
 
Abstract
Severely eroded beaches on low lying islands in Indonesia were grown back in a few months—believed to be a record—using an innovative method of shore protection, Biorock electric reef technology. Biorock shore protection reefs are growing limestone structures that get stronger with age and repair themselves, are cheaper than concrete or rock sea walls and breakwaters, and are much more effective at shore protection and beach growth. Biorock reefs are permeable, porous, growing, self-repairing structures of any size or shape, which dissipate wave energy by internal refraction, diffraction, and frictional dissipation. They do not cause reflection of waves like hard sea walls and breakwaters, which erodes the sand in front of, and then underneath, such structures, until they collapse. Biorock reefs stimulate settlement, growth, survival, and resistance to the environmental stress of all forms of marine life, restoring coral reefs, sea grasses, biological sand production, and fisheries habitat. Biorock reefs can grow back eroded beaches and islands faster than the rate of sea level rise, and are the most cost-effective method of shore protection and adaptation to global sea level rise for low lying islands and coasts.
 
(This article belongs to the Special Issue Coastal Sea Levels, Impacts and Adaptation)