Biorock Electric Reefs Grow Back Severely Eroded Beaches in Months

marine science and engineering

Biorock Electric Reefs Grow Back Severely Eroded Beaches in Months

Thomas J. F. Goreau 1,2  and  Paulus Prong 2,3

Global Coral Reef Alliance, 37 Pleasant Street, Cambridge, MA 02139, USA
Biorock Indonesia, Bali 80361, Indonesia
Pulau Gangga Dive Resort, Sulawesi 95253, Indonesia
Severely eroded beaches on low lying islands in Indonesia were grown back in a few months—believed to be a record—using an innovative method of shore protection, Biorock electric reef technology. Biorock shore protection reefs are growing limestone structures that get stronger with age and repair themselves, are cheaper than concrete or rock sea walls and breakwaters, and are much more effective at shore protection and beach growth. Biorock reefs are permeable, porous, growing, self-repairing structures of any size or shape, which dissipate wave energy by internal refraction, diffraction, and frictional dissipation. They do not cause reflection of waves like hard sea walls and breakwaters, which erodes the sand in front of, and then underneath, such structures, until they collapse. Biorock reefs stimulate settlement, growth, survival, and resistance to the environmental stress of all forms of marine life, restoring coral reefs, sea grasses, biological sand production, and fisheries habitat. Biorock reefs can grow back eroded beaches and islands faster than the rate of sea level rise, and are the most cost-effective method of shore protection and adaptation to global sea level rise for low lying islands and coasts.
(This article belongs to the Special Issue Coastal Sea Levels, Impacts and Adaptation)

1. Introduction
Accelerating global sea level rise is now causing almost all beaches worldwide to erode [1]. The current rate of sea level rise, now 3 mm/year [2], will accelerate greatly in the future as the melting of ice caps increases, masked by shorter term regional fluctuations driven by local weather [3]. IPCC projections of sea level rise are often thought by the public to represent the end point of sea level rise response to fossil fuel CO2, but in fact they are merely points along the first 5, 10, 20— or at most 100—years, of the initial rise of a curve that will continue to increase for thousands of years. The time horizons for IPCCC climate change projections were chosen for political purposes, not for scientific ones, and therefore miss the vast bulk of the real world long-term sea level and temperature responses to increased greenhouse gases [4].
Since the ocean holds nearly 93% of the heat in the Earth ocean-atmosphere-soil-vegetation-rock-ice system [5] and it takes around 1500 years for the ocean to mix and turn over [6], Earth’s surface will not fully warm up until after the deep ocean waters, now about 4 degrees above freezing, heat up. Global temperatures and sea levels lag thousands of years behind CO2 increases because of ocean mixing, so we have not yet really begun to feel the inevitable temperature and sea level responses. Because of these politically chosen time horizons, IPCC projections do NOT include more than 90% of the long-term climate response to changing CO2 [4,7-9]. By greatly underestimating the all too real long-term responses of temperature and sea level, they have lulled political decision makers into a false sense of complacency about the magnitude and duration of human-caused climate change or the urgency of reversing them before the really serious impacts hit future generations [4].
Improved estimates of long-term global climate impacts are made from actual paleoclimate records of changes in global CO2, temperature, and sea levels from the Antarctic ice cores, deep sea sediments, and fossil coral reefs over the last few million years [7,9]. The last time that global temperatures were 1-2 °C above today’s level, sea levels were about 8 m higher, crocodiles and hippopotamuses lived in swamps where London, England, now stands (Rhodes Fairbridge, 1987, personal communication) [10,11], and CO2 levels were around 270 ppm, around 40% lower than today [7,9]. Comparison of long-term global climate change records suggests that the steady state climate for the present (2017) CO2 concentration of 400 ppm, once the climate system has fully responded, are about 17 °C and 23 m above today’s levels [9]. We are committed to such changes even if there is no further CO2 increase starting right now because of the excess already in the atmosphere, unless that is reduced. No amount of emissions reduction can reduce excess atmospheric CO2, only increased natural carbon sinks with storage in soil and biomass carbon can draw down the dangerous excess in time to avert extreme long term changes [4,8,12], which would last for hundreds of thousands to millions of years. Perhaps the largest cost of adaptation to climate change will be the cost of protecting low lying islands and coasts from being flooded by global sea level rise.
Beach erosion is largely controlled by refraction of offshore waves by bottom topography [13]. The reflection of waves by steep cliffs prevents any accumulation of sand at their bases. In contrast, shallow sandy beach fore-shores are almost always protected from waves by reefs, Waves are refracted as water passes through porous and permeable reef structures, without being reflected.
Conventional methods of shore protection rely on “hard” solid structures like sea walls and breakwaters that are designed to reflect waves, like rock cliffs. This concentrates all the energy of the wave at the hard, reflecting surface, and the force on the structure itself is twice the momentum of the wave due to the reversal of the wave direction vector [14,15]. The inevitable result of this energy focusing is that first all the sand is washed away in front of the structure, and then is scoured away underneath it until the structure settles, cracks, falls apart, and needs to be rebuilt. These structures protect what is behind them until they fall down, but they cause erosion in front of them and guarantee loss of sediment. All such structures are consequently ephemeral and will fall down sooner or later, depending on how large and strong they are.
This is well known to coastal engineers but most feel there is no alternative to impermeable solid walls, even though so called “porous” or “permeable” breakwaters, made of small distributed modules shaped like coral reefs, with holes within structures and passages between them, seem to protect shores with much less material and with greatly reduced reflection. But we could find no experimental or theoretical modeling literature on porous permeable structures like natural coral reef structures found by searching on Google Scholar. Most search results for porous breakwaters were for solid rock walls with crevices between stones rather than reef-like structures with a much greater range of pore and spacing sizes, capable of interacting with waves over larger wavelength ranges.
Coral reefs provide the most perfect natural shore protection, dissipating around 97% of incident wave energy by frictional dissipation [16]. Healthy reefs produce sand as well as protect it, and rapidly build beaches behind them. They are sand factories, generating vast amounts of new sand, largely remains of calcareous green and red algae. Every grain of white limestone sand on a tropical beach is the skeletal remains of a living coral reef organism. Once corals die from high temperatures, pollution, or disease, the previously growing and self-repairing reef framework starts to deteriorate and crumble from boring organisms that excavate the rock [17]. Because of the mass mortality of corals around the world caused by global warming [18-23], tropical beaches that were growing until recently have begun rapid erosion, and islands are washing away because of global sea level rise. 
Here we describe the results of a novel method of beach restoration—Biorock electric reef shore protection—which avoids the intrinsic physical flaws of hard reflective structures, and which grows beaches back at record rates at a lower cost, with less materials, and with much greater environmental benefits than seawalls. Biorock electric reefs are grown by low voltage electrolysis of sea water, which causes growth of limestone rock minerals dissolved in sea water over steel surfaces, which are completely protected from corrosion [24,25]. Biorock reef structures can be any size or shape, and are the only marine construction material that gets stronger with age and is self-repairing [26]. When grown slowly, less than 1-2 cm/year, this material is several times harder than Portland Cement concrete [25].
Biorock shore protection reefs are open mesh frameworks designed to permit water to flow through them, like coral reefs. The size and shape of the structures, and of the holes in them, determine their performance dissipating wave energy. The electricity needed for electrolysis is safe extremely low voltage (ELV) direct current provided by transformers, chargers, batteries, solar panels, wind mills, ocean current generators, or wave energy generators, depending on which source is most cost effective at the site [27].
Biorock reefs in Grand Turk survived the two worst hurricanes in the history of the Turks and Caicos Islands, which occurred three days apart and damaged or destroyed 80% of the buildings on the island [28]. Sand was observed to build up around the bases of Biorock reef structures. In contrast, concrete reef balls nearby caused such severe sand scour around and under them that they buried themselves into the sand, digging their own graves. Solid objects, by forcing bottom currents to accelerate as they diverge around them, cause erosion to a depth of about half the height of the structure, and about as wide as the structure height [29]. Biorock reefs, being permeable and porous to waves, had the opposite effect than reef balls, baffling waves, lowering their velocity, and causing sand deposition instead of erosion [30].
The first Biorock shore protection reef was built in front of a beach that had washed away at Ihuru Island, North Male Atoll, the Maldives, in 1997. Sand bags were being piled in front of trees and buildings that were falling into the sea, which the hotel thought they had no chance of saving. The Biorock reef was a linear structure parallel to the shore, 50 m long, about 5 m wide, and about 1.5 m high, built on eroded reef bedrock. The structure cemented itself solidly to the limestone bedrock with mineral growth. Waves were observed to slow down as they were refracted through the structure, dissipating energy by surface friction. Sand immediately began to accumulate on the shore line and under and around the reef, and the beach grew back naturally and rapidly in a few years, and stabilized with no further erosion, even though the 2004 Tsunami passed right over it [30]. Corals growing on the Biorock reef had 50 times (5000%) higher coral survival than the adjacent natural coral reef after the 1998 coral bleaching event [25]. For a decade after the bleaching event this resort had the only healthy reef full of corals and fishes in front of their beach in the Maldives. The hotel whose reef and beach were saved by the Biorock project turned the power off, with the result that the corals, no longer protected from bleaching by the Biorock process [31,32], suffered severe mortality in the 2016 bleaching event.
The second group of Biorock shore protection reefs were built at three eroding beach locations at Gili Trawangan, Lombok, Indonesia around 2010. These consisted of 4 to 6 separate reef modules designed to break waves up by slowing down separate portions of the wave front and driving the incoming wave front out of coherence, using less structural materials. The Biorock structures are shaped like an upside-down wave, which is optimal for dissipating wave energy, with no vertical surfaces to cause reflections, and so are called Biorock Anti-Wave structures (BAW). Although these structures were small, new beach growth was clearly visible at all sites within 8 months on Google Earth images [30]. One set of structures was of, and creation of a gap underneath it, so that it was on the way to falling down. One year later the gap underneath had completely filled in, and the sand had risen by about a meter to cover half the vertical wall height. The seawall on the neighboring property, built at the same time, but not protected by Bioorck, completely collapsed within a year [30]. The hotels whose beaches had been restored by the projects then turned the power off. Because the structures, no longer maintained, growing, or protected from rusting, are now collapsing, beach erosion has now resumed, with new sea walls being constantly built and falling down.
2. Materials and Methods
Pulau Gangga, North Sulawesi, Indonesia, has suffered progressive beach erosion. The index maps show its location on various scales (Figure 1a-d), and Google Earth images show the rapid erosion of the beach between 2013 and 2014 (Figure 2a,b). The site is outside the typhoon belt because it is close to the Equator, but it is affected by both the Australian and Indo-China Monsoons. From around December through May the winds and waves are usually from the southeast. A strong southward tidally-modulated current normally sweeps sand from north to south at the site.
The formerly wide sand beach had largely washed away by late 2015, leaving an erosion cliff about 1.36 m high along the shore, with trees falling into the sea, and beach pavilion buildings have had to be repeatedly torn down and moved inland. In front of the 200 m of severely eroded beach we built 48 Biorock Anti Wave reefs in a staggered design to dissipate wave energy before it hits the beach. The time of installation, January 2016, was just before the monsoon season when erosion takes place on this beach, and was done as fast as possible before waves made installation difficult.
48 Biorock Anti Wave reefs were deployed in the sea grass beds in front of the eroding beach in January 2016. They were arrayed in twelve groups of four, each group powered by a single power supply located 100 m away on land, connected by electrical cables dug into the sand (Figures 3 and 4a-d). They grow thickest at the bottom, and thinnest on top. The bottom 10-20 cm of the structures were always submerged at low tide, but above this they were exposed to the air for various periods, depending on the tidal cycle. Since structures grow only when and where submerged in salt water, the bottoms are always growing, while the top grows only when submerged, about half of the time. The gabion baskets were deployed in a grid pattern (visible from aerial images below) at low tide in shallow sand, seagrass, and coral rubble.
The resort had previously purchased gabion wire baskets for stones to make a breakwater, not knowing that these would quickly rust and fall apart. Because these were already available, they were incorporated into the core of the Biorock Anti Wave structures, because the Biorock electrolysis process prevents any rusting of the steel. The rocks are bound in place by growth of minerals over the mesh and by prolific growth of barnacles, oysters, and mussels, preventing rock shifting in heavy surge from breaking the gabion. There are both advantages and disadvantages to the use of rock gabions in Biorock shore protection structures, as they can cause scour by acting as a near solid wall, but they cause more rapid initial results slowing wave erosion than a more open structure that does not incorporate them. Gabions are not an essential part of the design, in fact not using them makes BAW units much faster and cheaper to construct and deploy. In this study gabions were used only for convenience as they had been previously bought and were already on site. Not to include rocks at all relies purely on the growth of a biological reef to provide long-term growing shore protection, instead of that provided by the rocks.
The core of each structure was a double gabion basket, 1 m × 1 m × 2 m with the long dimension parallel to the shore. These were placed on the shallow sea floor at predetermined sites, with the long axis parallel to the shore, and filled in with rounded river stones (largely in the 20-50 cm size range). At the start, the rocks had clean surfaces with nothing growing on them. The gabion baskets were overlain with standard welded steel mesh bars used in local construction, spacing 15 cm, dimensions about 2.1 m by 5.4 m. These sheets were curved into an arc to fit over the top of the gabion basket, with the long dimensions at right angles, so that the long axis of the arc was perpendicular to the shore, oriented into the waves coming over the shelf edge coral reef. They were welded across at the base with support rebars and vertical bars to strengthen them. Each unit was carried by four people at low tide, placed over a gabion basket and wired to it with hose clamps and binding wire. The growth of minerals over the steel cement it firmly to any hard rock bottom, and cement sediment around the bases on sand or mud, firmly attaching the structure to the bottom. The structures sit on the bottom under their own weight and that of the rocks they contain.
Beach profiles were measured using the U-tube water level measuring method [32]. They are estimated to be accurate vertically to about a millimeter, and horizontally to about a centimeter, by repeated measurements. The beach profile before the start of the experiment was estimated from photographs taken before and after from the same positions with common objects of known size in the images for scale. The accuracy of the pre-project beach profile estimate is thought to be about 10 cm vertically and one meter horizontally. Unfortunately, the apparatus for making rapid and accurate beach profiles was not built until September 2016, eight months after the start of the project. A second set of measurements was made in January 2017, a year after the start of the project, after a severe storm and at several more intervals since then. Initial beach profiles were estimated by measuring the height of the erosion cliff at the start of the project using the measured height of concrete foundations as a scale.


Figure 1. The site shown on Google Earth Images of the location of the project (red star) on decreasing scales: (a) Indonesia, (b) North Sulawesi, (c) Pulau Gangga
(a) 23 May 2013
(b) 4 January 2014
(c) 15 December 2014
(d) 4 August 2017
Figure 2. Erosion of the beach prior to the project. Google Earth images from 2013 (a) and 2014 (bshowing short term changes in the beach before the project, the last available image taken near low tide a year before the project began in early 2016 (c), and the first image after the project, taken near high tide 1.5 years after (d). Notice the cores of the Biorock Anti Wave modules as white spots in the seagrass off the regenerated beach. Beach erosion beyond the project near the pier at the south was caused by storm waves from the southeast and longshore drift sand blockage by the solid rock pier. Waves from the northwest shown in (c) are typical during erosion of this westward facing beach. Note the row of pavilions (dark spots) on the edge of the beach erosion scarp and brown dying trees with roots exposed in (c) and how in (d) the roofs are now hidden by new leaf canopies due to prolific tree leaf regrowth after sand buildup around their roots.
Figure 3. Soon after start of the project, at low tide (wide angle image). The tops of the reef restoration structures are clearly visible. The eroded curve is the area where the beach grew back.
Figure 4. Aerial views, oblique at low tide (a) and vertical at high tide (b) on 12 March 2017, fourteen months after the installation, showing the Biorock Anti Wave structures (dark spots in sea grass beds). The northern edge of the project, on the same day at high (c) and low (d) tides. The Red spot in the last image two images is the northern limit of the project.
3. Results
The speed of beach regrowth astonished local residents. The formerly concave beach, ending in an eroding cliff, is now convex in its profile and growing. Large trees that had been dying after sand washed away, exposing their roots to sea water, have leafed out new canopies since the sand built up around their roots.
By the time of the first beach profile measurements the eroded beach had almost completely grown back and the erosion scarp, 1.36 m tall, was reduced to about 10 cm. About 80% of the beach grew back in less than 3 months and has continued to grow ever since, even during strong storm conditions that in the past caused severe erosion. Over the course of a year the beach has increased in height by more than a meter, and in width by more than 15 m, over a two hundred meter length, a conservative estimate of an increase of beach sand volume of 3000 cubic meters. Most of the gains occurred in the first two months, but have continued since (Figure 5a-g).
The beach growth in the first year was wider at the south than at the north. But there were interesting differences after a severe storm in early January, which caused some erosion of the southern end of the beach, while there was substantial growth of the central and northern sections. Since then the center and north have continued to grow, while the south has continued to erode slowly (Figure 6a-c).
(a) November 2015
(b) December 2015
(c) December 2015
(d) May 2016
(e) August 016
(f) November 2016
(g) January 2017
Figure 5. Before & after photos of beach taken at various times: (a) November 2015, beach looking north two months before start of project, tree falling into the sea and roots exposed at beach erosion scarp, (b) December 2015, one month before project, 1.36 m high erosion scarp and foundations of beach pavilions about to collapse near center of beach, (c) December 2015, one month before project, large old tree collapsing into the sea, leaves dying, roots exposed, (d) May 2016, 4 months after project installation, lower branches of fallen tree buried in new beach sand growth, roots buried, new growth, (e) August 2016, seven months after, (f) November 2016, ten months after, (g) January 2017, Twelve months after, soon after a severe storm, looking south. Most of the beach grew after the storm, even though this was the sort of event that had caused heavy erosion in the past. The south end, shown here, was worst affected.
Figure 6. Beach profiles, measured at different times for the north (a), center (b), and south (c). The Zero reference datum for the central profile is the top of the concrete pillar foundation at the left of the December 2015 photograph. A 1.36 m vertical cliff stood at what is now the zero distance, based on measurements from photographs. Dates of measurements: X and dashed line estimate from January 2016; KEY to symbols: B upward triangle, 21 September 2016; C square, 11 January 2017; D downward triangle, 11 March 2017, E circle, 10 July 2017.
There has been prolific growth of hard and soft corals all over the bases of the structures and in intervening areas (Figure 7a-e), prolific growth of sea grasses all around them, dense settlement and growth of barnacles, mussels, and clams on the rocks in the core of the BAW structures, and a rapid increase in juvenile fish and echinoderm populations. In addition, there has been prolific growth of sand-producing calcareous green and red algae around and between the structures.
Figure 7. Underwater images: One end of a Biorock Anti Wave structures at high tide soon after installation (a), growth of barnacles over smooth river stones inside the gabions (b), examples of rapid growth of corals, sea grasses, and other organisms under, over, and around their bases (ce).
Wave fronts are dissipated as they pass through the structures, breaking up the coherence of incoming wave fronts (Figure 8a-c). This dissipation behaves as refraction through permeable structures. But the wave interaction can include a reflective component once structures have grown to be solid with all pores filled in, or if the rock fill is too impermeable to transmit wave pressure through intervening spaces. In that case, sand-eroding scour will be caused, while purely refractive dissipation increases sand accumulation underneath and behind the structure. There is also a diffractive component caused by wave interaction with the metal structure spacing and lattice spacing, which appeared to damp waves at spatial scales that range from the spacing of the metal grid used (0.1 m), the size of the modules (1-5 m), and the spacing of the modules (roughly 10 m).
Figure 8. Diffraction of energy. Incoming wave energy dissipated by interaction with structure these photographs were taken in rapid succession, the middle picture appears brighter because of break in the clouds, and the photographer moved between the first two images. (a) approaching wave, (bwave starting to interact with mesh, (c) wave energy dissipated by friction.
4. Discussion
We are not aware of any other case in which a badly eroded beach has been grown back so uickly and naturally. In addition, the Biorock reefs have caused prolific growth of corals, barnacles, oysters, mussels, and seagrass, and created a juvenile fish habitat [30]. 
Biorock reefs can be any size or shape. Mineral growth extends up to the high tide mark. They can be built entirely subtidal, as at Ihuru, entirely exposed at low tide as at Gili Trawangan, or have only the tops exposed at low tide, as at Pulau Gangga. Since the structures grow only when submerged, those in the intertidal grow most on the bottom, and least on the top. The structures attach themselves solidly to bedrock, and cement loose sand around their bases. Whether the structures are entirely submerged or partially exposed affects their wave mitigating performance. Those that are fully submerged are never visible from shore and generate real coral reef communities or oyster and mussel reefs in muddier or colder waters. Those reefs located in the intertidal zone are visible at low tide, which may be aesthetically objectionable to those who want a clear ocean view from the beach, but they are more effective in protecting the shore if there is a storm during high tide, which would pass over deeper reef structures.
The size, shape, and spacing of the modules affect their performance, and cost. What is astonishing is that record beach growth was achieved with far less material and far lower cost than sea wall or a breakwater. Conventional reinforced concrete structures are made by first building a reinforcing bar frame, and the steel is a very small part of the total cost compared to cement, stone, wooden forms, and labor. Since steel in reinforced concrete structures invariably rusts, expands, and cracks the concrete, such structures have finite lifetimes, especially in salty coastal air. 
Biorock structural steel is completely protected from rusting, and the continuous growth of hard minerals makes it constantly stronger, and able to grow back first in areas that are physically damaged. The cost is far less than a reinforced concrete structure of the same size and shape, because instead of cement, rocks, labor, and wooden forms we simply provide an electrical supply instead. Estimates of Biorock reef costs range from $20-1290/m of shoreline depending on the size of the reef grown, while other methods range from $60-155,000/m, or 3-120 times more expensive [16]. The amount of electricity used is small, the entire Pulau Gangga beach restoration project uses about one air conditioner worth of electricity.
Shore protection provided by Biorock includes both production of new sand by prolific growth of calcareous algae around them, and physical protection from sand erosion by wave energy dissipation. The results of beach growth after the project was installed indicate that beach sand accumulation is a very dynamic function of wave and current interactions with reef structures. Biorock reef structures physically dissipate wave energy and reduce erosion at the shoreline, while also generating new sand. They should slow down transport of sand by north to south tidal currents at the site. That, and the interplay of the structures with waves coming from different directions, may explain why the unusual January 2017 storm seems to have transported sand in the reverse of the usual direction. Further measurements will reveal if this trend continues, or is reversed by sand production from increased calcareous algae growth around the structures.
Wave energy dissipation due to friction at the surface of the growing limestone minerals produced by the Biorock process is very quickly exceeded by the much larger, and rougher, surfaces provided by the prolific growth of corals, barnacles, sea grass, and all other living marine organisms as the structure becomes rapidly overgrown. The size, shape, and spacing of the structures, as well as the reef organisms growing on them, affect their performance as wave absorbers, and their designs can be readily changed by adding, or removing, sections as needed. Such structures can be designed to be oyster, mussel, clam, lobster, or fish habitat for highly productive and sustainable mariculture.
Biorock structures interact with waves over a very broad range of wavelengths, and are expected to produce wave diffraction on wavelength scales similar to the spacing of the structures—about 10 m—and over the spacing of the mesh—about 10 cm. Since the growing, self-repairing Biorock structures cannot be modelled by conventional hydrodynamic modeling schemes, it will be important to make physical measurements of wave energy around such structures to evaluate actual performance, and to optimize them for beach growth purposes.
The initial results of this project resulted in extraordinary beach growth, which could be improved with further experimentation under a wider range of conditions, and should be much more widely applied as a cost-effective beach restoration solution that uniquely restores marine ecosystem  services.
5. Conclusions
We have grown back severely eroded beaches naturally in months by growing Biorock electric reefs in front of them. These structures cost far less than sea walls or breakwaters and work on entirely different physical principles. They restore marine ecosystems as well as beaches. The exceptionally rapid growth of corals on them [31,33] provides additional shore protection, and the rapid growth of sand-producing calcareous algae on and around them produces new biological sand supplies. These structures can easily keep pace with global sea level rise because solid hard electrochemical minerals can be grown upwards at rates up to 2 cm/year—around 5 times faster than sea level rise—and grow still much faster when corals, oysters, mussels, and other calcareous organisms cover them. As a result, Biorock shore protection reefs quickly turn eroding beaches into growing ones, can protect entire islands and even grow new ones. Biorock is the most cost-effective technology for protecting eroding coasts, for restoring fisheries habitat, and is critically needed to save the low-lying islands and coasts now threatened by global sea level rise, and the billions of coastal people who will become climate refugees if global warming is not rapidly reversed [4,12].
6. Dedication
This paper is dedicated to the memory of the late Wolf Hilbertz, who first invented the Biorockprocess of growing minerals in the ocean in 1976, and who foresaw all its applications, including shore protection.
Acknowledgments: We thank the entire management and staff of Pulau Gangga Dive Resort and its parent company, Lotus Resorts, for their willingness to try new, better, more natural and effective approaches to shore protection. Lotus Resorts paid for all materials, equipment, domestic travel, and time. The authors thank them deeply for their willingness to pioneer innovative methods of shore protection. We also thank Lori Grace for providing funds for a round trip ticket to Indonesia for Thomas J. F. Goreau to construct the device to measure beach profiles. We thank the anonymous reviewers for their constructive suggestions that have improved the original draft.
Author Contributions: T.J.F.G. and P.P. conceived, designed, built, and installed the first four Biorock Anti Wave modules and connected them to power; P.P. then built and installed the rest. T.J.F.G. analyzed the data; contributed reagents/materials/analysis tools; and wrote the paper. Although they are not listed as authors, because they did not work on the projects in the water, the entire management and staff of Lotus Resorts, operators of Pulau Gangga Dive Resort, played absolutely crucial roles in the design, logistics, funding, advice, information, and support for the work described. T.J.F.G. is a co-inventor of the Biorock electric technology of marine ecosystem restoration.
Conflicts of Interest: The authors declare no conflict of interest.
1.      Pilkey, O.H.; Neal, W.J.; Bush, D.M. Coastal erosion; In Coastal Zones and Estuaries. Encyclopedia of Life
Support Systems (EOLSS); UNESCO: Paris, France, 1992.
2.      Dieng, H.B.; Cazenave, A.; Meyssignac, B.; Ablain, M. New estimate of the current rate of sea level rise
from a sea level budget approach. Geophys. Res. Lett. 2017, doi:10.1002/2017GL073308.
3.      Nieves, V.; Marcos, M.; Willis, J.K. Upper-Ocean Contribution to Short-Term Regional Coastal Sea Level Variability along the United States. J. Clim. 2017, 30, 4037-4045.
4.      Goreau, T.J. Global biogeochemical restoration to stabilize CO2 at safe levels in time to avoid severe climate\change impacts to Earth’s life support systems: Implications for the United Nations Framework Convention on Climate Change. In Geotherapy: Innovative Technologies for Soil Fertility Restoration,  Carbon Sequestration, and Reversing Atmospheric CO2 Increase; Goreau, T.J., Larson, R.G., Campe, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2014.
5.      Levitus, S.J.; Antonov, I.; Boyer, T.P.; Baranova, O.K.; Garcia, H.E.; Locarnini, R.A.; Mishonov, A.V.; Reagan, J.R.; Seidov, D.; Yarosh, E.S.; et al. World ocean heat content and thermosteric sea leve change (0-2000 m), 1955-2010. Geophys. Res. Lett. 2012, 39, L10603, doi:10.1029/2012GL051106.
6.      Gebbie, G.; Huybers, P. The Mean Age of Ocean Waters Inferred from Radiocarbon Observations: Sensitivity to Surface Sources and Accounting for Mixing Histories. J. Phys. Oceanogr. 2012, 42, 291-305.
7.     Goreau, T.J. Balancing atmospheric carbon dioxide. Ambio 1990, 19, 230-236.
8.     Goreau, T.J. Tropical ecophysiology, climate change, and the global carbon cycle. In Impacts of Climate Change on Ecosystems and Species: Environmental Context; Pernetta, J., Leemans, R., Elder, D., Humphrey, S., Eds.; International Union for the Conservation of Nature: Gland, Switzerland, 1995; pp. 65-79.
9.      Rohling, E.J.; Grant, K.; Bolshaw, M.; Roberts, A.P.; Siddall, M.; Hemleben, C.; Kucera, M. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nat. Geosci. 2009doi:10.1038/NGEO557.
10.     Koenigswald, W.V. Mammalian faunas from the interglacial periods in Central Europe and their stratigraphic correlation. In The Climate of Past Interglacials; Sirocko, F., Claussen, M., Sanchez Goñi, M.F., Litt, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2006; pp. 445-454.
11.     Koenigswald, W.V. Discontinuities in the Faunal Assemblages and Early Human Populations of Central and Western Europe During the Middle and Late Pleistocene. In Continuity and Discontinuity in the Peopling of Europe: One Hundred Fifty Years of Neanderthal Study, 101 Vertebrate Paleobiology and PaleoanthropologyCondemi, S., Weniger, G.-C., Eds.; Springer Science + Business Media B.V.: Dordrecht, The Netherlands, 2011.
12.     Goreau, T.J. The other half of the global carbon dioxide problem. Nature 1987, 328, 581-582.
13.     Munk, W.H.; Traylor, M.A. Refraction of Ocean Waves: A Process Linking Underwater Topography to Beach Erosion. J. Geol. 1947, 55, 1-26.
14.     Wiegel, R.L. Oceanographical Engineering; Dover: New York, NY, USA, 1992.
15.     Schiereck, G.J. Introduction to Bed, Bank, and Shore Protection: Engineering the Interface of Soil and Water; VSSD: Delft, The Netherlands, 2006.
16.      Ferrario, F.; Beck, M.W.; Storlazzi, C.D.; Micheli, F.; Shepard, C.C.; Airoldi, L. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nat. Commun. 2014, doi:10.1038/ncomms4794.
17.      Goreau, T.F.; Goreau, N.I.; Goreau, T.J. Corals and Coral Reefs. Sci. Am. 1979, 241, 124-136.
18.      Goreau, T.J. Testimony to the National Ocean Policy Study Subcommittee of the United States Senate Committee on Commerce, Science, and Transportation, S. HRG. 101-1138: 30-37; US Government Printing Office: Washington, DC, USA, 1991
19.     Hayes, R.L.; Goreau, T.J. The tropical coral reef ecosystem as a harbinger of global warming. World Resour. Rev. 1991, 3, 306-322.
20.     Goreau, T.J.; Hayes, R.L.; Clark, J.W.; Basta, D.J.; Robertson, C.N. Elevated sea surface temperatures correlate with Caribbean coral reef bleaching. In A Global Warming Forum: Scientific, Economic, and Legal Overview; Geyer, R.A., Ed.; CRC Press: Boca Raton, FL, USA, 1993; pp. 225-255.
21.      Goreau, T.J.; Hayes, R.L. Coral bleaching and ocean “hot spots”. Ambio 1994, 23, 176-180.
22.      Goreau, T.J.; Hayes, R.L. Global coral reef bleaching and sea surface temperature trends from satellite-derived Hotspot analysis. World Resour. Rev. 2005, 17, 254-293.
23.      Goreau, T.J.; Hayes, R.L.; McAllister, D. Regional patterns of sea surface temperature rise: Implications for global ocean circulation change and the future of coral reefs and fisheries. World Resour. Rev. 2005, 17, 350- 374.
24.      Hilbertz, W.H.; Goreau, T.J. Method of Enhancing the Growth of Aquatic Organisms, and Structures Created Thereby. U.S. Patent No. 5,543,034, 6 August 1996.
25.      Goreau, T.J.; Hilbertz, W. Marine ecosystem restoration: Costs and benefits for coral reefs. World Resour. Rev. 2005, 17, 375-409.
26.      Goreau, T.J. Marine electrolysis for building materials and environmental restoration. In ElectrolysisKleperis, J., Linkov, V., Eds.; InTech Publishing: Rijeka, Croatia, 2012; pp. 273-290.
27.      Goreau, T.J. Marine ecosystem electrotherapy: Practice and theory. In Innovative Technologies for Marine Ecosystem Restoration; Goreau, T.J., Trench, R.K., Eds.; CRC Press: Boca Raton, FL, USA, 2012.
28.      Wells, L.; Perez, F.; Hibbert, M.; Clervaux, L.; Johnson, J.; Goreau, T. Effect of severe hurricanes on Biorock coral reef restoration projects in Grand Turk, Turks and Caicos Islands. Rev. Biol. Trop. 2010, 58, 141-149.
29.      Shyue, S.-W.; Yang, K.-C. Investigating terrain changes around artificial reefs by using a multi-beam  echosounder. ICES J. Mar. Sci. 2002, 59, S338-S342, doi:10.1006/jmsc.2002.1217.
30.     Goreau, T.J.; Hilbertz, W.; Azeez, A.; Hakeem, A.; Sarkisian, T.; Gutzeit, F.; Spenhoff, A. Restoring reefs to grow back beaches and protect coasts from erosion and global sea level rise. In Innovative Technologies for Marine Ecosystem Restoration; Goreau, T.J., Trench, R.K., Eds.; CRC Press: Boca Raton, FL, USA, 2012.
31.     Goreau, T.J. Electrical stimulation greatly increases settlement, growth, survival, and stress resistance of marine organisms. Nat. Resour. 2014, 5, 527-537, doi:10.4236/nr.2014.510048.
32.      Andrade, F.; Ferreira, M.A. A Simple Method of Measuring Beach Profiles. J. Coast. Res. 2006, 22, 995-999, doi:10.2112/04-0387.1.
33.      Goreau, T.J.; Cervino, J.; Polina, R. Increased zooxanthellae numbers and mitotic index in electrically stimulated corals. Symbiosis 2004, 37, 107-120.
 © 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 

Coral bleaching is now starting over a large part of the Caribbean

Here in Jamaica it is in the earliest and mildest phases, with only the most sensitive colonies of the three most sensitive species showing paling. Temperatures in Jamaica were only briefly above the HotSpot levels, and have cooled since, so bleaching is not likely to be noticeable to anyone else unless the waters warm up again in the next few weeks.

There has been no noticeable change in coral bleaching thresholds for 30 years, and therefore no signs of adaptation, but we are steadily losing the most vulnerable species so there is less to bleach.

In Panama, which lies in the core of the Goreau-Hayes Coral Bleaching HotSpot (below) bleaching will be much more noticeable. Reefs in the Panamanian Caribbean bleached earlier this year when the HotSpot first developed, recovered to some degree following mild cooling in mid year, and are now bleaching yet again for a second time this year. Impacts could be severe as they bleached last year and the year before as well, though not severely enough to cause much mortality.

Curaçao, Bonaire, Belize, Honduras, Colombia, and many other parts of the Caribbean are likely to bleach in the next few weeks unless there is dramatic cooling.

As usual, there have been no reports of bleaching from the areas all across the Pacific that were most devastated by high temperatures this year.

Severe bleaching is certain to be ongoing in the Ryukyus, the Marianas, Palau, Yap, Chuuk, Pohnpei, and Yap, but dive shops have simply stopped reporting bleaching…………

Or perhaps it is because NOAA declared that “the bleaching event is now over”?

coral bleaching, Caribbean, 2017, Biorock, Goreau, Hayes, HotSpot,  method coral bleaching, Caribbean, 2017, Biorock, Goreau, Hayes, HotSpot, method

Before and After : Biorock Electric Reefs in Curaçao

Before and After time-lapse series by Michael Duss showing spectacular coral growth on Biorock electric reefs in Curaçao.

This video shows the coral development at our BioRock project in Curacao with the status September 2017. The video was created by the Curacao Divers for the Curacao BioRock Foundation.


Shark bites deterred by Biorock Electric Coral Reef Projects

Coral reefs are the most biologically diverse marine ecosystems and provide vital ecosystem services. Global warming, deteriorating water quality, overharvesting, and other threats are accelerating coral reef decline. An innovative coral reef restoration method, invented by Prof. Wolf Hilbertz and Dr. Tom Goreau, Biorock® technology, uses electricity to make corals to grow faster and healthier, and survive lethal bleaching temperatures.

A study entitled “The effects of Biorock-associated electric fields on the Caribbean reef shark (Carcharhinus perezi)and the bull shark (Carcharhinus leucas)” just published in ANIMAL BIOLOGY by Marcella Uchoa, Craig O’Connell and Tom Goreau investigated how electric fields associated with Biorock reefs influence behavior of sharks and bony fishes. It is well known that sharks can feel extremely weak electrical fields through specialized electroreceptors called ampullae of Lorenzini.

They studied behavioral responses of two shark species, the bull shark (Carcharhinus leucas) and the Caribbean reef shark (Carcharhinus perezi) and several bony fish species towards weak electric fields in Bimini, Bahamas. Statistical analyses of 90 trials found both shark species fed the least, and avoided bait food they knew was there, when the electric field was turned on. Sharks approached the bait yet completely missed and exhibited signs of disorientation. Since detection of electric fields by sharks is important in the final phases of prey capture, Biorock generated electric fields clearly confused them. In contrast, bony fish feeding behavior was not affected by the electrical field.

This study demonstrates a need for future studies with more species of shark and fish species around Biorock electrical reef restoration projects, since deterrence of sharks, as top predators, may impact ecosystem balance”, said Marcella Uchoa, a Brazilian student who did the study for her Masters Degree in the RIMER Erasmus Mundi Marine Science Program at the University of the Basque Country, Spain. “Since this initial study demonstrated that Biorock reefs elicit close-range shark deterrent responses, further testing is warranted to assess the ability for these systems to serve as either a personalized shark deterrent or a shoreline bather protection system” said Craig O’Connell, head of the O’Seas Conservation Foundation, which specializes in shark behavior and conservation. Tom Goreau, President of the Global Coral Reef Alliance added that “Biorock electric reefs could benefit humans and sharks as well as corals and fishes. The electrical fields inhibit attacks in the vicinity of restoration projects, but would not affect sharks further away, so it helps preserve coral reefs, fishes, humans, and sharks at the same time, while avoiding the damage and bycatch from nets, baited hooks on lines, and poisons”.

Biorock, shark, bite, Bimini, Goreau, Hilbertz
Marcella Uchoa preparing fish food for sharks in Bimini (photograph by Craig O’Connell)

For more information please contact: info (think)

Elkhorn Reef Restoration: Westender, Jamaica after 1 month

June 29 2017

Thomas J. F. Goreau

In the 1950s Jamaica was surrounded by some of the finest coral reefs in the Caribbean, which were the first in the world to be studied by diving (Goreau & Goreau, 1959). These were almost all destroyed by eutrophication caused by untreated sewage, hurricanes, and dredging (Goreau, 1992) and have continued to deteriorate, causing a bottom up collapse of the fisheries due to lack of shelter and food, quite independently of top-down collapse caused by overharvesting.

Marine protected areas where the corals are dead and dying will not restore fisheries, so active restoration of the habitat to provide the fish with shelter and food is needed for the fish populations to recover.

New technologies to rapidly restore coral reefs were invented in Jamaica in 1987, but have been abandoned in Jamaica for 25 years due to lack of support and funding from both Jamaican and foreign institutions.

The Biorock electric reef restoration project at Westender Inn, Westmoreland, is the first new project using locally-invented technology in Jamaica for 25 years:

Biorock Coral Restoration comes back to Jamaica after 25 years

This tiny pilot project aims to show how community-managed groups can restore their coral reef and fisheries around Jamaica.

The project was set up in May, 2017. This report shows the first photographs of the new coral growth, taken in June 2017, after one month.

This area used to be a solid forest of elhorn coral reaching the surface, that you could not swim over (see photograph below of a typical Jamaican reef around 60 years ago). That forest of coral was smashed into dead rubble by hurricanes and has never recovered. While a few small corals have managed to settle, the reef has lost its structure, its biodiversity, and its ability to provide fish with shelter and food. Worse, the limestone bedrock below is being systematically excavated and eroded by dense populations of sea urchins. The very small Westender pilot project aims to turn a collapsed vanishing reef back into a lush growing one, full of fish.

Since there are so few elkhorn corals left, and since we use only naturally broken fragments found on the bottom, most of which are in poor condition, we could only find a handful of them to transplant onto the new Biorock reef. Most of these pieces were very small, but all are growing well.

The photos below show that all have recovered from the physical damage they had previously suffered and all are growing rapidly. Already new branches are forming, and the small white spots are new coral polyps showing extremely rapid coral growth. The corals can be seen to be already overgrowing and attaching themselves to the structure.

The small corals that have previously settled on the dead reef rock will grow faster, and so will the “good” algae, the calcareous branching algae that are the source of the beach sand. Greatly increased settlement of new corals will also become obvious in the coming year.

In May the steel framework attached over the dead reef rock was red and rusting. In June it has been completely covered by growing limestone rock. The spacing of the mesh, 6 inches or 15 centimeters, provides a scale. Fish immediately began to move in to the project site.

Photographs by Dan Brewer, except for the first, which was taken around 60 years ago by the late Prof. Thomas F. Goreau, founder of Jamaican coral reef science.


Coral, Sea Grass, and Mangrove Restoration Galeta Lab, Panama

June 27 2017
Coral Reef, Sea Grass, and Mangrove Restoration Projects using Biorock Technology at Galeta Marine Laboratory, Colon, Panama
Preliminary Report and Recommendations
Thomas J. F. Goreau-Arango
Gabriel Despaigne-Ceballos

Biorock electric coral reef, sea grass, and mangrove restoration project are underway at the Galeta Marine Laboratory. This cutting edge new technology greatly increases the settlement, growth, survival, and resistance to stress of all marine organisms (Goreau & Hilbertz, 2005; Goreau & Trench, 2014; Goreau 2014).
The restoration projects are a Memorial to the first Panamanian marine scientist, Dra. Nora Isabel Arango de Urriola y Goreau, 1921-2016:

In Memoriam: Dr. Nora Goreau April 25 1921 – December 18 2016 – Mother of Coral Reef Science

They were built and installed in 2015 by two Panamanian divers, Gabriel Despaigne Ceballos, President of Diving Contractors Panama SA, and Dr. Thomas Joaquin Goreau-Arango, President of the Global Coral Reef Alliance. The coral projects are visible on live camera at the Galeta Laboratory web site:
It is crucial for the corals to have the extra energy provided by the Biorock process before coral bleaching affects Panama, which is expected soon since temperatures there have reached bleaching levels unusually early in the year. Biorock corals show up to 50 times (5,000%) higher survival after severe bleaching.

Results to date show that all coral species are have grown very well on the Biorock reef (Agaricia tenuifolia, Porites astreoides, Porites divaricata, Montastrea (Orbicella) annularis, Siderastrea siderea, Stephanocoenia intersepta).
In contrast only one coral species is doing very well on the control structure, Porites divaricata, while the other species have shown considerable mortality.
The Biorock structure is not rusting, and is growing limestone rock over the steel, becoming thicker and stronger with age. The control structure is rusting, becoming thinner and weaker with age. Eventually the control structure will collapse, and then any surviving corals should be transplanted to the Biorock structure.
Fish constantly move between the reef structures and the surrounding areas, so they are hard to count. However there appear to be more fishes, and especially more juvenile fishes, in and around the Biorock structure than the control structure.
Both the seagrass and mangrove projects had good growth of minerals on them. The seagrass bed on the reef flat was badly damaged by sedimentation during recent boat channel excavation, and most of the seagrass seemed to be dying, yet the Biorock seagrass was lush and green. This could be because the Biorock seagrass was less affected by sediments or due to more rapid growth. Loss of seagrass on the reef flat will result in increased erosion and reduced capacity to adapt to rising sea levels.
There was good growth of marine organisms, including corals, sponges, and oysters on the mangrove roots in the mangrove project area, as well as numerous juvenile fish, seemingly more than in similar areas further away.
The projects were all working well until February 2017. Shortly after that Trevor Mendelow of View Into The Blue sent Zachary Rago to maintain the camera. All 6 electrical cables to the projects were cut, and all of the electrodes and the sign on the project honoring the memory of the first Panamanian marine biologist, were missing afterwards. After the vandalism was found in May, all cut cables were immediately repaired and the stolen electrodes replaced. Only Goreau, Despaigne, and Mendelow knew where they were, and other than Rago no one else visited the site, which is under armed guard. An improved mounting for the charger was made. However, since the electrician was away we were unable to change the old, badly corroded electrical junction box at the base of the pillar to which the charger is mounted. This could leak in heavy waves, causing risk of electrical shorting. We bought a new outdoor junction box with seals and will replace the old one at the first opportunity. In addition, we will hard-wire the charger directly into the power line with its own on/off switch, so that both the outlets will be available to the lab (one is now occupied by the charger plug).

Recovery from sabotage:
Within a day after power was restored new patches of white minerals could be seen growing on the Biorock structure, while the control shows red rust spots. It is important to document the recovery of the project after several months without power. The Biorock corals should become more fluorescent, darker in color, and grow faster again.
There appears to have been an increase in stinging hydroids on the project while the power was off, similar to those seen on the control. Hydroids are common on artificial steel substrates in the ocean, but rare on Biorock reefs, so it is expected that they will now decrease on the Biorock but not the control.

The Colon area has been at near bleaching temperatures for a couple of months, unusually early in the year, and bleaching is likely later in the year when water temperatures usually rise. Because the benefit of the Biorock process is the DIRECT effect of the electrical field, and is not residual, it is especially important to maintain power continuously when bleaching hits.
The results so far (despite months without power due to sabotage) are so good that more naturally broken corals should be rescued and transplanted when the opportunity arises. However, it is very important that the size and color of the corals be documented photographically right away, so that future changes in them can be documented. The fish populations in both Biorock and control domes, and nearby control sites should be documented. Regular photographs of the corals are needed to measure growth rates, which would be an excellent project for a Panamanian marine biology student.
Because the charger is being used well under capacity, the projects can be expanded. We suggest use of long wires from the Biorock project to add a small trickle charge to the nearest natural coral reefs at the edge of the channel and see if their growth is also stimulated (as we have found in Indonesia). That way much larger areas of reef will benefit by faster coral growth, higher coral settlement, and higher resistance to sedimentation and bleaching from high temperatures.

Changes in seagrass biomass, growth, sediment carbon, and commensal organisms should be documented, but a comparable control site nearby needs to be selected. The Biorock method should be applied to damaged seagrass in the heavily sedimented area to see if their recovery is enhanced, as is expected.

It is hard to compare the effects of the mangrove project because it is in the middle of a mature mangrove that is impossible to walk through. It is recommended that new mangrove plots be established near the boat ramp, where sedimentation has raised the bottom into the intertidal zone and where mangroves are now spreading outward. Small Biorock and control plots can be established with Rhizophora seedlings transplanted in them, so that the effects on above ground and below ground mangrove growth can be documented. Both sea grass and salt marshhave been shown to have higher root and shoot growth with Biorock. Since most mangrove and seagrass transplantation projects fail because the roots fail to establish before waves wash the plants out, Biorock methods could greatly increase success of large scale mangrove restoration that will be increasingly needed when sea level rise accelerates. Small Biorock plots could be powered by a solar panel.
A graduate student from Ecuador, Fatima Andrade, is interested in doing a mangrove restoration project there for her Masters thesis, doing field work from February to August 2018. Since the project will become a long term one, a Panamanian student should be trained to continue the project. An application should be made to STRI for this proposed project with Stanley Heckadon and Tom Goreau as PIs.

The camera wiper arm is not working, and the dome was seen to be covered with sediment, blocking the view. This should be wiped clean from time to time. Whenever Trevor Mendelow, Zachary Rago, or anyone from VITB, comes to check the camera, they need to be watched closely at all times, especially when in the water, to prevent future theft and vandalism.

Below are all the photos of the project, in the interest of complete documentation, although some are repetitive. We also have video taken at these and other times. We will download these from back-up drives, edit then, and post them later.
June 13 2015

Solomon Islands to start worlds largest Mariculture farm

Solomon Islands to start worlds largest Mariculture farm at Ontong Java Atoll
June 20 2017

The Solomon Islands government approved a new mariculture farm and hatchery project, expected to be the world’s largest, on June 1 2017.

It will be located in Ontong Java, one of the world’s largest and most remote atolls, with over 1,380 square kilometers of natural productive habitat that will be actively restocked, managed, and sustainably harvested.

The new farm has been organized by Dr. Reginald W. Aipia, medical doctor and entrepreneur of the Ontong Java Development Company Ltd., technology provider Erik Wilton Hagberg of Pacific Aquaculture Cooperatives International Inc., with guidance from Dr. Tom Goreau of the Global Coral Reef Alliance and Biorock Technology Inc.

The project has gained full approval of the Solomon Islands Fisheries Department, having satisfied strict technical qualifications to obtain licensing. Fisheries staff will work collaboratively with the program providing further technical assistance, monitoring, and certification of all products resulting from the project.

The mariculture farm will involve the entire community, and focus on production of sea cucumbers, giant clams, and other species, using innovative reproduction methods developed by Hagberg, combined with all the known benefits of Biorock technology such as increased growth rate, survival, larval settlement, and resistance to environmental stresses like high temperature.
Sea cucumbers and giant clams are being rapidly overharvested worldwide due to their high value for food. Sea cucumbers are also a source of naturally occurring pharmaceuticals. Extracts from sea cucumbers are already included in promising treatments for cancer, arthritis, HIV, herpes, and more.

The unprecedented size and productivity of Ontong Java Atoll, coupled with year-round farming activities could result in Ontong Java becoming the first place to provide sustainable sources of pharmaceutical companies with the raw materials needed to commercialize new medical treatments, with significant added value to the people of the Solomon Islands.

The Solomon Islands Government had previously banned export of sea cucumbers due to concern over their rapid decline. Sea cucumbers play a central role in outer island economics, with some communities deriving as much as 90% of their total income from producing dried sea cucumbers. The existing pattern of open and closed seasons, usually 3 months every 3 years, has severe negative economic and human impact on the affected communities. The venture’s new comprehensive farming and management approach will normalize activities year-round, providing lucrative sustainable livelihoods for the target communities.

Solar powered Biorock shore protection structures, and a variety of Biorock mariculture enclosures will be grown to increase shore protection, grow back eroding beaches, and ensure sustainable yields of target species long into the future. The entire atoll will serve as a laboratory for developing methods to protect atolls from overfishing, global sea level rise, and economic despair using new technology and ethical business practices.

The Chief Fisheries Officer of the Solomon Islands Ministry of Fisheries and Marine Resources, John Legata, said that “We see mariculture as way of turning vanishing resources into permanent and sustainable income for residents, and hope to expand sustainable mariculture to other islands in the future”. The Prime Minister of the Solomon Islands, the Hon. Manasseh Sogavare, said that he would “render full support for the farming to start immediately”.


For more information please contact:
Dr. Reginald W. Aipia
Ontong Java Development Co. Ltd, Opp. NRH car park; Chinatown
P. O. Box 366, Honiara; Solomon Islands
Cell: +677-7475424
Tel: +677-22054 Fax: +677 22061

Biorock Coral Restoration comes back to Jamaica after 25 years


The first new Biorock electrical coral reef restoration project in Jamaica for 25 years has been started.

The small project is located in front of Westender Inn, at the extreme end of the West End of Negril,

Electric reef restoration technology was invented and developed 30 years ago in Jamaica by late architecture Professor Wolf Hilbertz and Dr. Tom Goreau at the Discovery Bay Marine Laboratory (T. J. Goreau & W. Hilbertz, 2012, Reef restoration using seawater electrolysis in Jamaica, in T. J. Goreau & R. K. Trench (Editors), Innovative Technologies for Marine Ecosystem Restoration, CRC Press).

It is a few kilometers from the last Jamaican Biorock project, in Little Bay. Local fishermen were amazed to see corals grow right over the solar panel powered Biorock reef.

Made from layers of conch shells, it was crowded with young lobsters and fish until the Biorock reef, the solar panel, and nearby houses were demolished by Hurricane Ivan on September 11-12 2004. Local fishers are eager to see more Biorock!

The area offshore from the project site had been a vast forest of elkhorn coral that reached the surface, which was demolished by Hurricanes Allen, Gilbert, and Ivan. There has been little or no sign of reef recovery along most of the coastline, except in a few small areas.

We have found elkhorn colonies nearby and are rescuing loose naturally broken coral fragments that are still alive but that would otherwise die, and propagating them on the Biorock reef.

There are so few remaining living naturally broken fragments now left in the area that we are starting with only around a dozen small naturally broken coral fragments, mostly Acropora palmata, Porites astreoides, Porites divaricata, Diploria clivosa, Diploria strigosa, and Agaricia agaricites. Two of these were found completely bleached where they had been washed into crevices.

But there are young corals of half a dozen species all over on the rocks underneath the Biorock structure, and these will grow up through the Biorock reef, while new corals will settle all around.

The result is that we will grow the reef upwards by about a meter, protecting the rocky shore from erosion, and eventually allowing sand to build up. The entire seafloor of the area is now eroding severely because it is densely covered with rock-boring sea urchins, constantly chewing holes right into the dead reef rock. We will turn a collapsing reef back into an actively growing one.

The return of life-saving Biorock electric reef restoration technology back home to the island of its birth can restore the lost corals, fishes, and vanishing beaches all around Jamaica if done on a large scale. Twenty-five years of involuntary exile from Jamaica were forced on us by lack of funding and support from both Jamaican and foreign institutions.

Since then we did around 400 Biorock projects in around 40 countries all around the world, keeping reefs alive when they would die from high temperatures and pollution, growing corals back rapidly in places where there has been no recovery, and even growing back severely eroded beaches in just months.

The Global Coral Reef Alliance thanks the Westender Inn, Negril for their support for the project, in particular Dan Brewer, Keith Duhaney, Steve Drotos, the entire Westender staff, Booty, Beenie, Ken, Ceylon Clayton, and the people of Orange Hill and Little Bay, Westmoreland, Jamaica.

Let’s make Jamaica’s coral reefs, beaches, and fisheries beautiful again: bring Biorock back home where it was born!

Westender, Jamaica, Biorock, coral, restoration, reef, Goreau

Staghorn coral growing nearly a centimeter a week on a Biorock reef in Negril, Jamaica. Photograph by Wolf Hilbertz, 1992