Spectacular Biorock coral growth videos


Spectacular coral growth on Biorock is seen in the three videos linked below.

Pemuteran, Bali

This video shows Biorock reef growth in Pemuteran, Bali at a site that had been almost barren of corals and fishes when the Biorock projects began 15 years earlier.

Gili Trawangan, Indonesia

This video shows the installation of a new Biorock reef in Gili Trawangan, Indonesia, and the growth of corals on it one year later:


This video shows phenomenal growth of staghorn corals in Curaçao shown by time lapse photos:

To see Biorock results for longer time scales (11 years) please look at: https://www.youtube.com/watch?v=Rx8TV9Kd0ns

Dredging threatens exceptional coral reefs in front of Panama Canal

An exceptionally healthy coral reef directly in front of the Panama Canal breakwater is threatened by dredging for the new Isla Margarita Port Terminal. Unless strict measures are taken to prevent mud from getting out of the Eastern Channel onto the adjacent coral reef, Panamanians stand to lose this habitat that is part of their national heritage.

Environmental impact assessments made for the port development only considered dead previously dredged areas inside the breakwater, and completely ignored the healthy coral reefs less than a hundred meters away, connected by an open channel to the dredging and landfill sites.

A survey by the Global Coral Reef Alliance (GCRA) and the Galeta Marine Laboratory of the Smithsonian Tropical Research Institution (STRI), at the request of Centro de Incidencia Ambiental (CIAM), found a healthy coral reef with high living coral cover right in front of Isla Margarita and the eastern end of the Panama Canal breakwater. These reefs are not mentioned anywhere in the port’s Environmental Impact Assessment (EIA): the EIA mentions only dead habitat in the area, which would not be affected from dredging nearby. The living coral reefs are only about 100 meters away from the Port dredge and filling operations.

This reef is close to the Isla Galeta Protected Area, and strong measures are needed to protect the highly vulnerable corals from suspended sediments.

This report, and the photos and video attached to it, describes the health status of this extraordinary reef (figures below) and the measures needed to monitor and protect it.

Proposed dredging plans at Isla Margarita, Panama Canal
Port plans. (Image courtesy of the EIA.) Diagonal striped area will become part of the port facility. Seafloor habitat to be filled in and turned into land is shown in stipple.
Proposed port lies right next to healthy coral reef in front of Isla Margarita, just outside the Panama Canal entrance.
The port lies right next to healthy coral reef in front of Isla Margarita. The photos and video in this report were all taken inside the coral reef area shown in blue, just across the breakwater from the area that will filled in for the expanded port.

The full report, with photographic and video documentation can be seen below.

Isla Margarita, Panama image compilation

Isla Margarita, Panama GCRA survey video

After the survey of Isla Margarita reef was done, the project proponents announced without warning that they had made a mistake: they needed 16 times more dredging material to complete the project than they had projected, and most of the required sand for the filling operations would be dredged in Nombre de Dios. Unfortunately, Nombre de Dios represents the center of the best shallow fringing coral reef flats in the entire Caribbean and is a site of global biodiversity importance.

Nombre de Dios Bay. The shallow reef flat of this bay is the best developed in the entire Caribbean.
Port plans. (Image courtesy of the EIA.) Diagonal striped area will become part of the port facility. Seafloor habitat to be filled in and turned into land is shown in stipple.


Biorock electric coral reefs survive the most severe hurricanes with little or no damage

Two new Global Coral Reef Alliance videos answer the question many people have: what happens in a hurricane? Here we show that Biorock reefs hit by the eye of three of the strongest Caribbean hurricanes, Hanna, Ike, and Irma, suffered almost no physical damage and built up sand around them during the event.

In contrast, solid concrete objects nearby caused so much scour and erosion around and under them that they sank into the sand. Solid breakwaters cause reflection of waves at the solid surface, concentrating all the wave energy in one plane, which causes sand to wash away in front of the structure, then underneath, until it is undermined and collapses. This is the inevitable fate of any vertical seawall, so they need constant and costly repair and replacement. After Hurricane Andrew every single shipwreck in South Florida was torn apart or moved great distances due to the strong surface drag. Not one remained intact.

Biorock electric coral reefs can be any size or shape. For growing corals, we make open frameworks, so the corals can benefit from the water flow through the structure, just as they do in coral reef. As a result of their low cross section to waves, they dissipate energy by surface friction as waves pass through them, refracting and diffracting waves rather than reflecting them. Their low drag coefficient means that they survive waves that would move or rip apart a solid object of the same size.

Here we show what happened to Biorock reefs after the most severe hurricanes ever to hit Saint Barthelemy and Grand Turk. Incredibly, there was little or no physical damage to the structures or to the corals, even though these structures were not welded, simply wired together by hand, and they were not physically attached to the bottom, simply sitting on the bottom under their own weight, attaching themselves to hard bottoms and cementing sand around their bases through growth of limestone rock over their surfaces.

Saint Barthelemy:

Grand Turk:

These astonishing results follow our previous video showing the record recovery of severely eroded beaches behind Biorock reefs:

Scientific papers documenting the Grand Turk results are at: Effect of severe hurricanes on Biorock Coral Reef Restoration Projects in Grand Turk, Turks and Caicos Islands

and the rapid restoration of the beach at: Biorock Electric Reefs Grow Back Severely Eroded Beaches in Months

It is important to realize that neither rocks nor structures exposed at low tide shown in this video are an essential part of the method. Almost all of Biorock structures are completely submerged and have no rocks. At Pulau Gangga this design was used to protect the beach from storms at high tide, and effectiveness was more important than aesthetics to the Resort, so they opted not to have what most people want: an invisible watchman that you can’t see at low tide sunset!

In addition, Biorock electric reefs greatly increase the settlement, growth, survival, and resistance to stress of all marine organisms, with only a single known exception: predatory sharks avoid electric fields that confuse them, protecting people and sharks from each other (Uchoa, O’Connell, & Goreau, 2017). In 2016 there was nearly complete survival of Biorock corals during severe high-temperature events that bleached and killed more than 95% of corals on nearby reefs.

Our results show that Biorock electric reefs are the most cost-effective method for saving corals from global warming, restoring reef communities (whether corals, oysters, or mussels), and protecting coastlines from erosion and global sea level rise.

Before and After : Biorock Electric Reefs in Curaçao

Before and After time-lapse series by Michael Duss showing spectacular coral growth on Biorock electric reefs in Curaçao.

This video shows the coral development at our BioRock project in Curacao with the status September 2017. The video was created by the Curacao Divers for the Curacao BioRock Foundation.


Biorock project Curacao

Artificial reefs help to preserve valuable ecosystems

Curacao’s intact coral reefs belong to the most popular attraction for divers and snorkelers. Globally however, corals are endangered by human influences. Such as pollution and overfishing of the oceans for example and already have been severely damaged in various places over the world.

Especially, thru climate change and weather phenomena such as El Niño, rising water temperatures can destroy entire reef systems. In many places artificial reefs are built to preserve or rebuild these valuable ecosystems.

A very special Biorock® reef grows currently at Curaçao Divers. Large metal constructions were placed in shallow, sandy area at the house reef in front of the Sun Reef Village on Sea. These metal constructions get a slight, gentle current of electricity. Naturally broken Coral pieces get collected and saved by being attached to the structure. The electrical current generates electrolysis, through which, minerals from the sea water like calcium carbonate settles on the metal structure.

This limestone provides a perfect underground for coral growth. The small electrical current sets in the coral polyp’s true super powers free:
In this electric field, corals grow up to 5 times faster than under natural conditions and are up to 50 times more resistant towards harmful environmental influences.

Fishes and other marine life appreciate the artificial reefs as a source of food and shelter. Within a short period of time, Biorocks® transform into an underwater oasis full of life and is an attraction for divers and snorkelers.

This is why the Curacao BioRock Foundation was founded at the end of December 2016 in order to maintain this and future projects.

Additional information:

Original article posted on: www.tauschr.net

To rebuild coral reefs quickly, just add electricity


Biorock reefs — sunken steel frames connected to a low-voltage current — are giving coral a second chance at surviving humanity.

May 27, 2016, 3:12 p.m. MICHAEL D’ESTRIES


Biorock reefs may offer a speedy solution to giving young coral reefs some much-needed protection against climate change. (Photo: Global Coral Reefs Alliance/Eunjae Im)

You may have heard that coral reefs are in trouble. Serious trouble. A recent survey of Australia’s Great Barrier Reef, the largest living structure on the planet, found 93 percent of the coral has been impacted by bleaching; a stark warning sign that the ecosystem is under tremendous environmental stresses.

The potential underwater losses are so great, encompassing an area of the size of Scotland, that one leading coral researcher is already calling it the country’s “biggest ever environmental disaster.

With the clock ticking, the race is on to find innovative ways to counter the mass deaths of coral reefs worldwide. The most obvious solution is to stop dumping carbon dioxide into the atmosphere to avoid a future of hotter, more acidic oceans. Scientists are also targeting so-called “super corals” in an effort to mass produce species more resistant to climate change. The third involves rebuilding coral reefs using steel frames and, most surprising, a steady current of electricity.

Called “Biorocks,” these steel-framed structures can sometimes appear to be more akin to an underwater art project than a coral incubator. The steel can take on any shape, but the most important piece of the puzzle is the low-voltage electricity coursing through the frame. The idea, patented in 1979, is the brainchild of marine scientist Wolf Hilbertz and marine biologist Thomas J. Goreau. Together, the pair discovered that an electric current passed through sea water creates a chemical reaction that results in a coating of limestone minerals similar in composition to the natural ones created by young coral.

“These currents are safe to humans and all marine organisms,” explains the Gili Eco Trust, a non-profit that has setup over 100 Biorock structures around islands in Indonesia. “There is no limit in principle to the size or shape of Biorock structures, they could be grown hundreds of miles long if funding allowed. The limestone is the best substrate for hard coral.”

The video below shows how a Biorock structure is made and installed on a coral reef.

Once a Biorock structure is submerged, organizers transplant broken fragments of live coral (often ripped from reefs by strong waves, anchors or other forces) and attach them to the frame. Electricity is provided by either an underwater cable from shore or from floating solar panels. Reef-building groups are also starting to experiment with wave-generation to power the frames. Once turned on, it only takes a matter of days before the structure is covered in a thin layer of limestone. Within months, the coral has taken hold and begins to flourish.

“No one believes what we do is possible until they see it themselves,” co-inventor Thomas Goreau told Gaia Discovery. “Growing bright coral reefs swarming with fish in a few years in places that were barren deserts is something everybody thinks can’t be done, but has been done in nearly 30 countries with only small donations, mostly from local people who remember how their reef used to be and realize they must grow more corals now.”

In the video below, one such local in Bali takes us on a dive and explains how he nurtures coral growth around a Biorock.

According to the Global Coral Reef Alliance, a non-profit of which Goreau is the president, Biorock reefs not only help speed the growth of coral, but also make them more resistant to stress-inducing temperature and acidity increases.

So why hasn’t more of the marine science community shifted to rebuilding coral reefs using the Biorock method? The first reason has to do with feasibility, since it’s not always easy to run a low-voltage cable from shore to the reef. Thanks to the rise of solar and tidal energy solutions, this obstacle has become less of a problem. The second, according to one marine scientist, has to do with an absence of published studies showing the process is actually worth pursuing.

“It certainly does appear to work,” Tom Moore, a coral restoration coordinator at the the National Oceanic and Atmosphere Administration, told Smithsonian Magazine. He added that the scientific community has been slow to embrace over the lack of independent validation. That said, and with coral reefs around the world facing worse odds as the years tick by, Moore says he’ll like give the process a try.

“We’re actively looking for new techniques,” he added. “I want to keep a very much open mind.”

Original article: Mother Nature Network