We Have Already Exceeded the Upper Temperature Limit for Coral Reef Ecosystems, Which are Dying at Today’s CO2 Levels

GCRA WHITE PAPER
April 2, 2018

 
Talanoa White Paper, GCRA 2018

2018 Talanoa Dialogue Platform

We Have Already Exceeded the Upper Temperature Limit for Coral Reef Ecosystems, Which are Dying at Today’s CO2 Levels

Thomas J. F. Goreau, Raymond L. Hayes, & Ernest Williams
 

THE PROBLEM
We are already beyond the upper temperature tolerance for coral reef ecosystems, and they can stand no further warming. Coral reef ecosystems will soon vanish unless atmospheric CO2 concentrations are rapidly reduced to pre-industrial levels.

Most corals in the world died from heat shock after the 1980s, when the world passed the tipping point temperature threshold for mass coral bleaching. Global warming heat waves are now killing corals so rapidly that 95-99% of corals (some thousands of years old) in pristine reefs can die in just days or weeks. Further warming will be a death sentence for coral reefs, the most biodiverse and productive of marine ecosystems. The press widely reports “scientists agree that 2º C, or 1.5º C warming is acceptable”, ignoring the ecological disaster that has already happened, and tacitly condemning coral reefs to death as the first ecosystem to be driven to extinction from fossil fuel greenhouse gas (GHG) caused global warming. This will severely damage marine biodiversity, fisheries, tourism, shore protection, and beach sand supply of over 100 countries, and sentence billions of people to lose their homes from future coastal flooding.

Coral reef bleaching is long known to be a general response to environmental stresses, but almost all coral bleaching is caused by high temperature heat shock. Temperatures above normal body temperature (37˚C) trigger human heat stress responses. Muscle cramps and excessive sweating are symptoms. If not relieved, heat exhaustion, and then heat stroke follow. Untreated heat stroke leads to failure of physiological mechanisms and death. Similarly, heat-shocked bleached coral (typically in water temperatures above 29.4˚C), is unable to defend itself against thermal stress. Coral reef bleaching, when symbiotic algae and host tissues dissociate, can be reversed if stress is quickly relieved. But any further rise in temperature or prolonged heat exposure leads irreversibly to death.

Coral bleaching has been known for a hundred years, but until the 1980s, it was only seen on small scales in tide pools cut off from water circulation at low tide, or in response to hurricane sediment and fresh water flooding. In 1918, and again in 1928, it was found that only around 1o C warming caused coral bleaching, and a little more killed them. These limits have not changed. When the first mass regional bleaching events took place in 1982-1983, almost all corals in the East Pacific (Panama, Costa Rica, Colombia, and Galapagos) died. Peter Glynn, who that year published the first book on Galapagos and East Pacific corals, studied every possible potential cause, and found only high temperature could explain it. Many thought that this was simply some peculiar regional coral sensitivity, because if all corals were really so close to their upper limit, why hadn’t it happened before due to natural fluctuations? Within a few years mass coral reef bleaching across the Caribbean, Pacific, and Indian Oceans made it clear that the global temperature tipping point world-wide had been suddenly passed in the 1980s.

Goreau and Hayes proposed the HotSpot method for predicting mass coral reef bleaching events from satellite sea surface temperature data (SST) in the late 1980s. They, Ernest Williams, Lucy Bunkley- Williams, and Peter Glynn pointed out that there had been NO regional mass coral bleaching events ever seen anywhere before 1982, but mass bleaching suddenly began and happened worldwide nearly every year since. They emphasized that continued warming would destroy coral reef ecosystems. Unfortunately, their predictions, widely ridiculed as alarmist at the time, have come true. Governments ignored scientific evidence of global warming, claiming that reefs were “resilient” and would “bounce right back”, funding research to blame anything else and those telling them what they wanted to hear.

The temperature thresholds for mass coral bleaching determined in the 1980s have not changed since. Bleaching events have gotten worse and more frequent, so dive shops now regard them as “normal” and no longer report bleaching, because it is “bad for business”. There has been no sign of thermal adaptation, corals still bleach at the same temperatures, but every year there are less left to bleach. Reef ecosystem function, structure, and biodiversity are collapsing, resulting in reefs with only a few species of “weedy” corals left. These can stand slightly higher temperatures, but even their limits are now being exceeded, and more frequently with further global warming, so they too will vanish. Even corals that have luckily survived bleaching events have been badly weakened by worldwide outbreaks of new coral diseases, which intensify during high temperature events, and often follow beaching events. For coral reefs to survive global warming must be rapidly reversed.

In 1992, before the UN Framework Convention on Climate Change was signed in Rio de Janeiro, the Global Coral Reef Alliance (GCRA) warned Ambassadors of the Association of Small Island States that agreeing to further increases in temperature was a suicide pact, that if prompt and deliberate measures were not taken to stop global warming right away most of the corals in the world would die from high temperature in the next 20 years. That is exactly what has happened. Yet governments and funding agencies continue to ignore that coral reefs are the most sensitive and vulnerable of all ecosystems to high temperature and pollution, wasting millions on propaganda about “managing” “resilient” reefs, instead of dealing with the root causes: GHGs from fossil fuels and land degradation.

Ocean acidification was understood long before the 1970s. Acidification is already a problem for cold and deep-water life, but NOT yet for tropical marine ecosystems. Because of the inverse relation between CO2 solubility and temperature, polar water holds three times more CO2 than equatorial water. Acidification is not a factor in death of corals, which recover from it. Corals are already dying worldwide at current temperatures but every press article about ocean acidification shows photographs of corals bleached by high temperatures, even though acidification neither kills corals nor does it bleach them! Skeletons of living corals can be completely dissolved in acid, but the coral tissue retains its color, and will survive and grow a new skeleton when put in normal seawater. Corals will need to use more energy to grow skeletons in acidic seawater, but acidification is not the existential threat to tropical coral survival widely and incorrectly claimed, although it is a real threat to deep sea cold water reefs. Ignoring the fact that coral reefs are already at their upper-temperature limit, and focusing on acidification problems for tropical coral reefs is a dangerously irresponsible and politically-motivated red herring. If CO2 is reduced in time to stop global warming from killing corals all global acidification problems are automatically solved. But focusing only on stopping acidification impacts on reefs guarantees corals will die sooner from heat stroke, and decades to centuries later the reefs made of their long-dead skeletons will eventually dissolve!

An author of this paper (TG) was Senior Scientific Affairs Officer for Global Climate Change and Biodiversity at the United Nations Centre for Science and Technology for Development in 1989 when the first draft of the UNFCCC was being prepared, prior to its distribution to governments. He inserted into the draft that one of the purposes of the Convention was to protect Earth’s most climatically-sensitive ecosystems, that these should be monitored for signs of dangerous climate change impacts, that there should be a trigger mechanism to reduce GHG emissions if climate damage was found, and that ALL GHG sources and sinks should be monitored. To force a politically acceptable compromise, all wording making these points were removed and replaced with vague subjective phrases like “acceptable warming.” The result of this fudged compromise is the perilous deterioration that ice caps and coral reefs have now reached. Governments who made this compromise failed their basic duty to protect their people, with the small island nations being the first and worst victims. This failure must not be repeated.

Governments are fooling themselves about how severe runaway climate change will be and how long it will last. IPCC projections focus on short-term responses over decades to centuries, ignoring long-term effects. The consequences are well known to climate scientists, but were not included because IPCC’s mandate from Governments reflects political needs, not scientific priorities. The inertia of the climate system inevitably caused by the fact that it takes 1500 years for the ocean to mix is ignored. Since deep ocean waters has been chilled by polar ice caps and are now just above freezing, until the deep sea warms up the full warming will not be felt at Earth’s surface. Heat is flowing down into the deep cold ocean, but surface temperatures have a built-in time lag response of thousands of years after atmosphere GHGs increase. Sea level has even longer time lags due to slow melting of the polar ice caps, which will continue for thousands of years, but there could be sudden increases under extreme warming when whole glaciers, lubricated underneath by meltwater, slide into the sea. Three rapid increases of 6.5, 7.5, and 13.5 meters are documented in fossil coral reefs during rapid ice melting at the end of the last Ice Age.

Nearly a million years of climate data from Antarctic ice cores clearly show that present atmospheric CO2 concentration of 400 ppm could lead to ultimate steady-state response of global temperatures around 17 C higher than now, and sea levels around 23 meters higher, many times more than IPCCC’s projections (see the data figures below). These effects will persist for hundreds of thousands of years unless GHG concentrations are rapidly reduced to pre-industrial levels. Eventually high temperatures and rotting marine life will remove oxygen from the water, turning the ocean into a dead zone, stinking with the rotten egg smell of hydrogen sulfide. Organic matter will then pile up in deep ocean sediments, eventually removing the excess CO2 from the atmosphere. Every time this happened in the geological past, coral reef ecosystems went extinct for millions of years until new reef-building corals could evolve. To avoid the inevitable long-term impacts of runaway climate change we must urgently take scientifically-sound action to reduce GHGs to pre-industrial levels now.

2018 Talanoa Dialogue Platform, GCRA White Paper
CO2, temperature, and sea level over the last 800,000 years from Antarctic Ice cores suggest the steady state temperature and sea level for today’s CO2 is 17 Celsius and 23 meters higher. Data from Rohling (2008), annotated by Goreau (2014).
2018 Talanoa Dialogue Platform, GCRA White Paper
The last time temperature was 1-2º C warmer, sea level was 7 meters higher, crocodiles and hippopotamuses lived in London, England, yet CO2 was 270 ppm, one third lower than today (Goreau 2014)

THE SOLUTIONS
Scientifically-sound solutions to save coral reefs are well established but are not being used on the scale needed, due to lack of funding. It has been known for more than 200 years that corals can be propagated by fragmentation, and that these methods only work when water quality is excellent. All the corals die when the water becomes too hot, muddy, or polluted. The only methods that will work in the future to maintain coral populations, while temperature and pollution are accelerating globally, are new methods that greatly increase coral settlement, growth, survival, and resistance to stress.

Because it directly stimulates the natural energy-generating mechanisms of all forms of life, GCRA’s Biorock electrical reef regeneration technology is the only method known that can grow Coral Arks to save species from extinction. Other coral restoration methods work only as long as it never gets too hot, muddy, or polluted, but the corals die from heat stroke when their temperature limits are exceeded, while most Biorock reef corals survive. The Biorock method keeps entire reefs alive when they would die, providing high coral survival when 95-99% of surrounding reef corals bleach and die from heat shock. It also grows back dead reefs and severely eroded beaches at record rates in places where there has been no natural recovery. Since there is no funding for serious reef restoration or shore protection anywhere in the world it is now being used only on a symbolic scale. The method uses Safe Extremely Low Voltage (SELV) direct current (DC) trickle charges that can be provided by energy of the sun, winds, waves, and ocean currents. It works for all marine ecosystems, coral reefs, oyster and mussel reefs, fisheries habitat, seagrasses, salt marshes, and mangroves. Severely eroded beaches recovered naturally just months after wave-resistant limestone reefs were grown in front of them. Because these reefs can be grown in any size or shape, increase growth and survival of all marine organisms, and since habitat can be designed for specific needs of different fish and shellfish, they provide a new paradigm for highly productive and sustainable multi-species mariculture of entire complex ecosystems that produce their own food.

Further human-caused warming tragically means that coral reefs may only survive in the long run on electrical life-support systems until GHGs and temperatures are reduced to near pre-industrial levels, but this is the only interim alternative remaining to preserve the world’s most valuable economic and environmental ecosystem services until pre-industrial GHG levels can be achieved. Nearly 60% of all global ecosystem service economic losses are from coral reef degradation. Reefs occupy less than 0.1% of the ocean so they suffer natural ecosystem service economic losses around a thousand times the global average. This is largely borne by small island nations, the first and worst victims of a crisis they did not create. Unfortunately, only reefs that can be powered can be saved, but if we don’t save all we can, these may be all we have left, so Biorock Coral Arks need to be greatly expanded to save species. Around 80% of all genera and nearly half the species of tropical reef corals are growing on around 500 Biorock reefs in some 40 countries, around 400 reefs in Indonesia, with the world’s largest and most biodiverse coral reefs.

The long-term solutions are also known. Humanity must regenerate the natural biological mechanisms that regulate atmospheric GHGs and climate by storing excess atmospheric carbon in soils and vegetation. Humans have destroyed about half the world’s biomass and lost about half the soil carbon wherever forests have been converted to agriculture, pastures, and cities. Regenerating soil carbon is the most cost-effective way to stabilize climate at safe levels, avoid dangerous long-term temperature overshoot, and regenerate food supplies and freshwater resources. This could be done in decades if Geotherapy methods already developed to regenerate ecosystems and soil fertility were more widely applied. Soils have around five times more carbon than the atmosphere, and soil carbon can be rapidly increased through regenerative carbon recycling management, including use of biochar, an ancient technology invented by Indigenous Amazonian peoples thousands of years ago to create the world’s most fertile soils in the middle of the most infertile soils on Earth. Properly made biochar lasts holds carbon for thousands of years. Charcoal from forest fires 65 million years ago after the asteroid impact that killed the dinosaurs, and even as far back as 350 million years ago, are still so perfectly preserved that the plant cells can be clearly seen. Biochar is best made from invasive weedy plants that have made large areas unproductive, converting wasted lands back into biodiverse, highly productive systems that hold far more carbon.

About half of soil carbon is stored in wetlands, and half that in coastal wetlands; mangroves, salt marshes, and seagrasses, whose soils hold more carbon than the atmosphere, and are responsible for about half the carbon burial in the oceans. These ecosystems, the most carbon-rich, occupy less than a percent of the Earth’s surface, and have been about half destroyed by humans. Restoring mangroves will be the fastest and cheapest way to remove carbon from the atmosphere. Most mangrove, seagrass, and salt marsh restoration projects fail as plants wash away before the roots can grow, because of increasing waves due to global sea level rise and global warming. Biorock electrical ecosystem restoration technology grows marine plant roots at much faster rates, and stores more carbon in marine soils, so it regenerates carbon-rich marine coastal ecosystems where other methods fail, protecting coasts from erosion, and regenerating critical juvenile fisheries habitat. GCRA, Biorock Indonesia, and Arsari Enviro Industri will apply these methods to restore destroyed mangroves in Kalimantan (Borneo) in order to turn intense carbon sources into sinks, and for orangutan sanctuaries. Last year, El Niño- caused forest fires burned organic peat soils in deforested and drained wetlands, briefly making Indonesia the world’s largest CO2 source, larger than China or the United States. Indonesia has the world’s largest mangrove and coral reef areas, but more than half the mangroves have been destroyed, and more than 90% of the reefs are damaged or degraded. By regenerating mangroves, coral reefs, fisheries, seagrasses, and beaches with Biorock technology Indonesia could become the world’s largest Carbon sink.

Geotherapy must be clearly distinguished from Geoengineering. Geotherapy is regenerative development to reverse climate change by restoring the natural carbon recycling mechanisms that regulate our planetary life support systems. Many Geoengineering proposals are expensive, unproven, high tech “solutions” that might provide temporary relief at best, but may cause worse problems and side-effects than the problems they claim to solve. Geotherapy has nothing in common with proposals masquerading as “green” solutions to climate change like Biomass Energy with Carbon Capture and Sequestration (BECCS). BECCS proposes to grow huge plantations of mono-species forests on industrial scales (competing with food production), burn them for energy, and pump the CO2 into holes in the ground, which could cause earthquakes by over-pressuring faults. BECCS irresponsibly treats carbon as waste to be concealed rather than as a valuable natural resource. BECCS will prevent natural carbon and biological nutrient recycling and storage, along with all the long-term Geotherapy benefits that increased soil carbon provides for food and fresh water supplies. Urgent worldwide application of methods to regenerate natural soil carbon and soil fertility are our best hope to reduce GHGs, stabilize them at safe pre-industrial levels, prevent temperature overshoot, and reverse climate change. Immediate global action to apply these methods on a large scale is essential to do this in time to prevent coral reef extinction. Governments must rapidly change course for this to happen.

The authors are coral scientists with roots in Jamaica, Panama, Cuba, Martinique, and Puerto Rico who have worked on reefs worldwide for more than 5 decades. They thank the pioneers of coral bleaching research, Maurice Yonge, Thomas F. Goreau, Nora Goreau, Robert Trench, and Peter Glynn for their long guidance, and Kevin Lister and Michael MacCracken for helpful suggestions on the draft.


Fluorescence for Coral Recruitment Research

By Charles Mazel
original article @ www.nightsea.com

Fluorescence is a valuable tool for research on coral recruitment and survivorship. Fluorescence makes it much easier to locate tiny corals both on the reef and in the lab.

On the reef –

With conventional searching techniques it is essentially impossible to locate juveniles until they are at least 5 – 10 mm in diameter. By this time they are between 6 months and a year old. This misses an important early part of their life history and makes it difficult to estimate survivorship in natural conditions.

With the BW-1 and FL-1 dive lights you can use fluorescence to search for coral recruits and juveniles both at night and in the daytime. Detecting small things is all about contrast, and fluorescence brings juvenile corals out in strong contrast. If a coral fluoresces it will generally appear as a bright green spot against a dark background. Researchers can find corals 5 mm in diameter from more than 2 meters away, and corals as small as 1 mm in diameter in routine sweeps of patches of reef.

nightsea.com juvenile coral white light
Arrow pointing to juvenile coral, white light (c) Charles Mazel
nightsea juvenile coral <1mm diameter fluorescing
Juvenile coral <1mm diameter fluorescing (c) Charles Mazel

In the lab –

Researchers often deploy settlement tiles on the reef and collect them later to find out what has settled on them. Fluorescence makes it easier to find corals on the settlement tiles. The images below are white-light and fluorescence images of a settlement tile that had been deployed on the reef in Bonaire.

nightsea Settlement tile white light
Settlement tile – white light (c) Charles Mazel
nightsea Settlement tile – fluorescence. Scale in cm.
Settlement tile – fluorescence. Scale in cm. (c) Charles Mazel

It helps to inspect the tiles under a stereo microscope, and it is now easy to add an economical fluorescence capability to your existing stereo microscopes with the Model SFA Stereo Microscope Fluorescence Adapter.

Coral polyp on settlement tile – white light
Coral polyp on settlement tile – white light. (c) Alina Szmant
Coral polyp on settlement tile – fluorescence
Coral polyp on settlement tile – fluorescence. (c) Alina Szmant
nightsea Coral polyp on settlement tile – white light
Coral polyp on settlement tile – white light. (c) Alina Szmant
Coral polyp on settlement tile – fluorescence
Coral polyp on settlement tile – fluorescence. (c) Alina Szmant

Several publications deal specifically with this application of fluorescence.

Baird, A. H., A. Salih, and A. Trevor-Jones, 2006. Fluorescence census techniques for the early detection of coral recruits. Coral Reefs, 25:73-76.

Hart, J. R., 2011. Coral recruitment on a high-latitude reef at Sodwana Bay, South Africa: Research methods and dynamics. MSc thesis, University of Kwa-Zulu, Natal, 81pp.

Korzen, L., A. Israel, and A. Abelson, 2011. Grazing effects of fish versus sea urchins on turf algae and coral recruits: Possible implications for coral reef resilience and restoration. Journal of Marine Biology, Vol. 2011, Article ID 960207 doi:10.1155/2011/960207. [Reprint on-line.]

Piniak, G. A., N. D. Fogarty, C. M. Addison, and J. Kenworthy, 2005. Fluorescence census techniques for coral recruits. Coral Reefs, 24:496-500.

Roth, M. S., and N. Knowlton, 2009. Distribution, abundance, and microhabitat characterization of small juvenile corals at Palmyra Atoll. Mar. Ecol. Prog. Ser., 376:133-142. [Reprint available on-line.]

Salinas-de-León, P., A. Costales-Carrera, S. Zeljkovic, D. J. Smith, and J. J. Bell, 2011. Scleractinian settlement patterns to natural cleared reef substrata and artificial settlement panels on an Indonesian coral reef. Estuarine, Coastal and Shelf Science, 93: 80-85.

Salinas-de-León, P., C. Dryden, D. J. Smith, and J. J. Bell, 2013. Temporal and spatial variability in coral recruitment on two Indonesian coral reefs: consistently lower recruitment to a degraded reef. Marine Biology, 160(1): 97-105.

Schmidt-Roach, S., A. Kunzmann and P. Martinez Abrizu, 2008. In situ observation of coral recruitment using fluorescence census techniques. JEMBE, 367:37-40.

Answers to some common questions:

Can you find ALL recruits with fluorescence?

No. Not all coral recruits fluoresce, and some that do fluoresce do not glow brightly enough to be found easily. Keep in mind that not all adult corals fluoresce either, and even within a species there may be both fluorescent and non-fluorescent morphs.

How far away can you spot a 1 mm recruit?

From our own experience, we have certainly seen many, many small bright dots from a meter or more away without looking very hard.

If you do find a small (1 – 2 mm) fluorescing feature, is it definitely a coral?

Not necessarily. There are many small non-corals that fluoresce, including anemones, corallimorphs, zoanthids, hydroids, etc. Even small mobile invertebrates such as some polychaetes fluoresce. It can be a challenge to know what is a coral and what is not.

How do you identify what you have found?

Identifying to species difficult to impossible. In the field you at least want to be able to distinguish coral from non-coral. A good magnifier is recommended.

Do you have to dive at night?

No. With the NIGHTSEA BW-1 and FL-1 lights you can find coral recruits in the daytime.

Does fluorescence work with settlement tiles?

Yes, you can use any of the NIGHTSEA underwater lights to inspect settlement tiles visually, or use fluorescence photography to systematically document growth on the tiles. Fluorescence also works well when inspecting settlement tiles under a stereomicroscope. NIGHTSEA offers a simple adapter that adds a fluorescence capability to just about any existing stereomicroscope.

original article @ www.nightsea.com


Restoring Coral Reefs Is Possible and Surprisingly Fast

Written By Dr. Mercola
Origianl posting on www.mercola.com

Coral reefs make up less than one-quarter of 1 percent of the Earth’s surface,1 yet supply resources worth an estimated $375 billion annually, according to the International Union for Conservation of Nature (IUCN).2 More than 500 million people around the world depend on coral reefs for protection from storms, food, jobs and recreation, and they provide a home to more than 25 percent of fish species and 800 hard coral species.

As for their importance to their surrounding ecosystems, it is immense, and the sheer diversity of species that depend on coral reefs for spawning, breeding and feeding is equally impressive. There are 34 recognized animal phyla, for instance, and 32 of them are found on coral reefs (even rain forests count only nine different phyla among their midst).3

Sometimes referred to as “rain forests of the sea,” it’s estimated that coral reefs may support up to 2 million different species and act as essential nurseries for one-quarter of fish species.

Coral reefs also serve as carbon sinks, helping to absorb carbon dioxide from the environment, and represent an irreplaceable source of protection for coastal cities. Their importance as a food source is also considerable, as healthy coral reefs can provide about 15 tons of fish and other seafood per square kilometer (.38 square mile) per year.4

Unfortunately, corals are in severe decline. According to conservation organization World Wildlife Fund (WWF), two-thirds of coral reefs worldwide are under serious threat and another one-quarter are considered damaged beyond repair.5 There may, however, be hope, even for damaged reefs, as new technology offers a chance for reefs to regrow at a surprisingly fast pace.

Biorock Technology Restores Coral Reefs

In 2000, it was stated at the International Coral Reef Symposium that about 94 percent of Indonesia’s coral reefs were severely damaged. This included Pemuteran Bay, where the once-thriving coral reef was largely barren. Biorock technology proved to be the answer, restoring the reef in just over a decade:

“Pemuteran formerly had the richest reef fisheries in Bali. The large sheltered bay was surrounded by reefs teeming with fish. The natural population increase was greatly augmented by migration of fishermen from Java and Madura, where inshore fisheries had been wiped out by destructive over-exploitation.

Destructive methods, like use of bombs and cyanide followed their use in other islands, and steadily spread until most of the reefs had been destroyed. The offshore bank reefs that had been dense thickets of coral packed with swarms of fishes, were turned into piles of broken rubble, nearly barren of fish.”6

The Karang Lesteri Project, highlighted in the video above, began in June 2000, when the first “coral nursery” was built at the site. Ultimately, 70 Biorock coral reef structures of different sizes and shapes were planted in the area, restoring the area’s diversity and ecosystem. Formerly known as Seament and Seacrete, Biorock was developed by the late professor Wolf Hilbertz and scientist Thomas Goreau, president of the nonprofit organization the Global Coral Reef Alliance (GCRA).

Projects are now being operated in Indonesia, Bali, Jamaica, the Republic of Maldives, Papua New Guinea, Seychelles, Phuket, Thailand and elsewhere. The technology starts with metal structures that are planted into the reef. Transplanted fragments of live coral (that have been damaged by storms, anchors or other mishaps) are attached and the structure is fed low-voltage electricity to accelerate the growth process. GCRA explains:7

“The Biorock® process … is a new method that uses low voltage direct current electricity to grow solid limestone rock structures in the sea and accelerate the growth of corals providing homes for reef fish and protecting the shoreline. The electrical current causes minerals that are naturally dissolved in seawater to precipitate and adhere to a metal structure. The result is a composite of limestone and brucite with mechanical strength similar to concrete.

Derived from seawater, this material is similar to the composition of natural coral reefs and tropical sand beaches … This patented process increases the growth rate of corals well above normal, giving them extra energy that allows them to survive in conditions that would otherwise kill them. At the same time these structures attract huge numbers of fish, and also provide breakwaters that get stronger with age.”

GCRA states that Biorock reefs grow at a rate of 1 to several centimeters of new rock per year, which is about three to five times faster than normal. While artificial reefs, which are sometimes made by sinking ships, planes, cars, concrete or other man-made materials, will sometimes attract fish and sponges that settle on their surface, the Biorock reefs ultimately turn into true, living coral reefs, courtesy of the growth of limestone. According to GCRA:8

“Coral larvae, which are millimeter-sized freely-swimming baby corals, will only settle and grow on clean limestone rock. This is why conventional artificial reefs made of tires or concrete rarely exhibit hard coral growth. But, when these coral larvae find a limestone surface, they attach themselves and start to grow skeletons. Mineral accretion is exactly what they are searching for. As a result, there are very high rates of natural coral settlement on Biorock structures.”

Is Biorock Sustainable, and Does It Withstand Hurricanes?

Funding to take Biorock to the next level is limited, with most projects so far acting as pilot projects to demonstrate how the process works. And some coral reef experts, such as Rod Salm, senior adviser emeritus with the Nature Conservancy, have suggested the process is too cost prohibitive to work on a large scale.9 Others have pointed out that its dependence on electricity could also be problematic environmentally, although some of the structures are powered via solar panels.

Further, GCRA evaluated damage to the structures in the Caribbean after hurricanes Hanna, Ike and Irma and found them to be remarkably unfazed. While even large shipwrecks in South Florida were damaged or moved during hurricane Andrew, for instance, the Biorocks’ open frameworks allowed water to flow through the structures, sparing them the brunt of the damage.

“For growing corals, we make open frameworks, so the corals can benefit from the water flow through the structure, just as they do in coral reef,” GCRA notes. “As a result of their low cross section to waves, they dissipate energy by surface friction as waves pass through them, refracting and diffracting waves rather than reflecting them. Their low drag coefficient means that they survive waves that would move or rip apart a solid object of the same size.”10

In research published in the journal Revista de Biologia Tropical by Goreau and colleagues, it’s noted that artificial reefs are often discouraged in shallow waters because of concerns that they could damage surrounding habitat during storms. However, in the case of the Biorock restorations, “the waves passed straight through with little damage,” and the researchers said the “high coral survival and low structural damage” after hurricanes suggests the process is effective even in areas that may be hit by storms.11

Another study by Goreau, published in the Journal of Marine Science and Engineering, suggests Biorock electric reefs are able to grow back severely eroded beaches in just a few months. The study noted:12

“Biorock reefs stimulate settlement, growth, survival, and resistance to the environmental stress of all forms of marine life, restoring coral reefs, sea grasses, biological sand production, and fisheries habitat. Biorock reefs can grow back eroded beaches and islands faster than the rate of sea level rise, and are the most cost-effective method of shore protection and adaptation to global sea level rise for low lying islands and coasts”

What’s Causing Coral Reefs to Die?

Coral reefs are facing numerous threats, including rising water temperatures that lead to coral bleaching, in which coral reject symbiotic algae, turn white, and are at increased risk of dying. Overfishing, which disrupts the ecological balance in the reef, as well as destructive fishing practices, such as the use of cyanide, dynamite, bottom trawling or muro-ami (which involves the use of nets and banging the reef with sticks), are also threats, WWF notes.13

Reefs are also harmed by tourism via boating, anchor drops and people diving, snorkeling around and touching the reefs (or collecting coral), as well as construction, mining and logging, which send excess sediment into rivers and the ocean, where it blocks precious sunlight from reaching the coral reefs. There’s even a live rock trade, in which coral is mined for building materials or to sell as souvenirs, with no regard for the destruction it causes to the planet.14

Pollution is another major threat, including that from industrial farm runoff, which is fueling the growth of marine algae blooms, which alter the food chain and deplete oxygen, leading to sometimes-massive dead zones. Even the sunscreen chemical oxybenzone is known to kill off coral reefs. It’s estimated that between 6,000 and 14,000 tons of sunscreen enter coral reef areas worldwide every year.

Much of this sunscreen contains oxybenzone, which research found to be damaging at minute levels — just 62 parts per trillion, or the equivalent of one drop of water in 6.5 Olympic-sized swimming pools.15 Aside from entering the water on swimmers, oxybenzone gets washed down the drain when you shower, entering sewage systems. Once in the environment, as a study published in the Archives of Environmental Contamination and Toxicology revealed, there are four key ways oxybenzone is damaging coral reefs:16

  • Exacerbates coral bleaching
  • Damages coral DNA, making them unable to reproduce and triggering widespread declines in coral populations
  • Acts as an endocrine disrupter, causing baby coral to encase themselves in their own skeletons and die
  • Causes gross deformities in coral, such as coral mouths that expand five times larger than normal

Other Techniques Restoring Coral Reefs

Numerous innovative programs are underway with the goal of restoring the world’s coral reefs. The Coral Restoration Foundation is using a program called the coral tree nursery, which is based on the fact that coral are able to grow and reproduce via fragmentation. That is, if a piece breaks off, it can reattach and grow again, forming a new colony.

Their program involves PVC “trees” that are tethered to the ocean floor. Coral fragments are then hung from the “branches.” The fragments come from their coral nurseries, where coral are nursed for up to nine months until they’re read to be attached to the tree. They’ve already produced tens of thousands of corals in their South Florida nurseries.17

In addition, the organization is working to create “healthy thickets of genetically diverse coral that can sexually reproduce and encourage natural recovery.” An estimated 22,000 corals have been “outplanted” in the Florida Keys, in part by volunteer divers, for this purpose.18

Other experts have suggested that releasing natural viruses, known as phages — short for bacteriophage — onto coral with bacterial disease could essentially wipe out the disease, saving the coral.19 Of course, prevention is even better than a cure, and this means taking steps to curb coral declines in the first place.

Changes to industrial agriculture that limit chemical runoff and help sequester carbon into the soil could have meaningful benefits to coral reefs. It’s estimated that one-third of the surplus carbon dioxide in the atmosphere stems from poor land-management processes that contribute to the loss of carbon, as carbon dioxide, from farmlands. This, in turn, contributes to ocean acidification that harms coral, according to Defenders of Wildlife.

“Seawater absorbs some of the excess CO2 from the atmosphere, causing the oceans to become more acidic. As a result, the oceans’ acidity has increased by 25 percent over the past 200 years. These acidic conditions dissolve coral skeletons, which make up the structure of the reef, and make it more difficult for corals to grow.”20

So, in addition to being a responsible swimmer or diver — and not touching or breaking coral — as well as using only natural, reef-friendly sunscreen, support farmers who are using diverse cropping methods, such as planting of cover crops, raising animals on pasture and other methods of regenerative agriculture. This, in addition to the innovative methods like Biorock being used to restore barren reefs, can help protect the ocean’s reefs from further damage.

Sources and References

 


Historical overview of impacts from land-based pollution on CBNRM as it applies to marine fisheries & coral reefs in the tropics

An historical overview of impacts from land-based pollution on
community based natural resource management (CBNRM) as it applies to marine fisheries & coral reefs in the tropics.

Paul Andre DeGeorges1,2*

1Tshwane University of Technology, Nature Conservation, Pretoria, South Africa
2Mayflower Drive, Greenbackville, Virginia 23356, USA

Abstract

The purpose of this review is to provide an historic record of the author’s experience from the 1960s through the 1990s with coral reefs and the impacts of land-based pollution and other actions by man on this important ecosystem, from the islands of the Caribbean and Central America to the West/East Coasts of Africa and the Western Indian Ocean. This is tied into the concept of Community Based Natural Resource Management (CBNRM), its origins in Southern Africa tied to Africa’s mega-fauna and how it can apply to fisher communities in the tropics. It concludes that unless human population pressures and the current forms of “development and conservation” both linked to pollution and habitat degradation are addressed, the future for both man and these unique ecosystems are in jeopardy. A key to this solution is how the Developed World relates to the Developing World. It is hoped that this review will provide insight to future generations of ecologists, researchers, resource managers, politicians, donors and NGOs (non- governmental organizations) as to the issues they will confront if both mankind and nature are to have a viable future, living in harmony. Currently, they appear to be in conflict with each other and only man can resolve these issues based upon how he interacts with Mother Nature.

Read PDF

Review Article: http://www.alliedacademies.org/journal-fisheries-research/


Frankencorals – In Science Magazine

The Frankenword glossary (Science: 359:154, 2018) omits Frankencorals! It covers death-dealing Frankentechnologies that alarm the public, but life-giving electrical technologies are completely excluded. We’re shocked: none of your examples involves electricity like the Global Coral Reef Alliance’s Biorock electrolysis technology, the sine qua non for genuine membership in the Frankenclub!

Despite widespread electrophobia, Biorock’s electrifying results are entirely beneficial: greatly increased settlement, growth, survival, and resistance to stress of all marine organisms examined, plants and animals, mobile or sessile (T. J. Goreau, 2014, Electrical stimulation greatly increases settlement, growth, survival, and stress resistance of marine organisms, Natural Resources, 5:527-537 http://dx.doi.org/10.4236/nr.2014.510048). Instead of convulsions and rigor mortis, Biorock corals uniquely survive severe high temperature bleaching events that kill more than 95% of corals around them, and quickly smile back at us because the low currents used are in the natural range and show no negative effects, except for predatory sharks, which get confused and won’t bite food right in front of them (M. P. Uchoa, C. C. O’Connell, & T. J. Goreau, 2017, The effects of Biorock-associated electric fields on the Caribbean reef shark (Carcharhinus perezi) and the bull shark (Carcharhinus leucas), Animal Biology, DOI 10.1163/15707563-00002531).

Biorock is the only marine material construction material that grows solid self-repairing structures 2-3 times harder than concrete (T. J. Goreau, 2012, Marine electrolysis for building materials and environmental restoration, p. 273-290 in Electrolysis, J. Kleperis & V. Linkov (Eds.), InTech Publishing, Rijeka, Croatia), and regenerates severely eroded beaches at record rates (T. J. F. Goreau & P. Prong, 2017, Biorock reefs grow back severely eroded beaches in months, Journal of Marine Science and Engineering, Special Issue on Coastal Sea Levels, Impacts, and Adaptation, J. Mar. Sci. Eng., 5(4), 48; doi:10.3390/jmse5040048), rapidly grow beach sand from calcareous algae, restore seagrasses and salt marshes under severe stress where all other methods fail, keep whole coral and oyster reef ecosystems alive when they would die, and grow them back at record rates where there is no natural regeneration (T. J. Goreau & R. K. Trench (Editors), 2012, Innovative Technologies for Marine Ecosystem Restoration, CRC Press). Biorock Indonesia and our partners are about to start Biorock mangrove and Nipa palm restoration of illegally deforested Borneo mangroves for orang utan sanctuaries and to sequester atmospheric CO2 as peat in what we expect to be the single most cost-effective carbon sink.

The reason marine life gets a charge from the Biorock method is that we operate in the beneficial range that galvanizes natural biophysical membrane voltage gradients all forms of life use to make biochemical energy, so they don’t need to use up to half their energy pumping protons and electrons backwards to maintain membrane voltage gradients, whose collapse means death (as caused by high voltages and currents). That’s why we call it electro-tickling, the antithesis of electrocuting high voltage currents everybody is monstrously terrified of!

Published in Science Magazine eLetter 359:154 


Panama Canal Port Dredging That Damages Coral Reefs Stopped By Legal Action

The lawsuit by Centro de Incidencia Ambiental (CIAM) against dredging that would damage coral reefs in front of the Panama Canal (based on GCRA reef surveys with the Galeta Marine Laboratory) was admitted by Panamanian Courts on 8 January 2018. This means that the construction works in the port must be suspended while the Court provides a final merits decision. Because we filed an amparo de garantías action, we argued infringement of the constitutional rights to a healthy environment, sustainable development and health. Because of these arguments, once this type of lawsuit is admitted it immediately suspends the legal effects of the resolution that approved the project’s EIA until a final decision is made by the Supreme Court.

Please read more on the news that was published on January 29 in Panama’s leading newspaper, La Prensa: 


Managing Ornamental Coral Trade in Indonesia

A Case Study in Bali Province during the last seven years, a thesis dissertation at Xiamen University, Fujian, China by Sandhi Raditya Bejo Maryoto, Biorock Indonesia Maluku Project Officer, covers the rapid expansion of coral exports for the aquarium trade in Indonesia in general, and Bali in particular.

Indonesia plans to end export of wild corals and switch to 100% export of verifiably cultured corals by 2020. With the banning of coral exports by the Philippines, and most recently by Fiji (BBC Article), Indonesia now has a near-complete monopoly on global aquarium coral exports, so now would be a good time for Indonesia to accelerate the phase-out of wild coral exports.

Abstract

The world ornamental coral trade continues to grow as the result of increasing demand for aquarium industries. Indonesia as a major exporter has distributed corals worldwide with the USA as the biggest market, followed by 87 other importing countries. Ditjen KSDAE (Directorate General for Conservation of Natural Resources and Ecosystem) of MoEF (Ministry of Environment and Forestry) and P2O-LIPI (Research Center of Oceanography – The Indonesian Science Institution) was mandated as a management and scientific authority, respectively, in this curio trade management in Indonesia which is highly referred to CITES provisions. The trade entangles numbers of fishermen, middlemen, wholesalers, and coral companies in advance of exportation. As reported by CITES, a total of 25,569,984 corals were traded from Indonesia in 1985 until 2014. More than 49% (12,719,104 pieces) of all corals were exported to the USA in the same period. As the trade directed to be more sustainable, cultured corals grew steadily during the last decade. BKSDA Bali (Conservation and Natural Resources Agency of Bali Province) also reported similar results in regional coral exportation from Bali. There were 9,583,821 pieces of ornamental corals, mostly were cultured corals, traded by coral companies based in Bali during 2010 – 2016, with annual growth rate of 19.06%. It constituted almost 60% of total Indonesia exportation and was carried out by 25 coral companies. Existing management measures e.g. quotas, licensing system, and spatial management through no-take zones have been put into effects despite still requires various improvements. More comprehensive studies and scientific data are therefore essential in decision making process to set out adaptive management strategies and thus ensuring sustainable coral trade.

Managing Ornamental Coral Trade Indonesia – Sandhi


Dredging threatens exceptional coral reefs in front of Panama Canal

An exceptionally healthy coral reef directly in front of the Panama Canal breakwater is threatened by dredging for the new Isla Margarita Port Terminal. Unless strict measures are taken to prevent mud from getting out of the Eastern Channel onto the adjacent coral reef, Panamanians stand to lose this habitat that is part of their national heritage.

Environmental impact assessments made for the port development only considered dead previously dredged areas inside the breakwater, and completely ignored the healthy coral reefs less than a hundred meters away, connected by an open channel to the dredging and landfill sites.

A survey by the Global Coral Reef Alliance (GCRA) and the Galeta Marine Laboratory of the Smithsonian Tropical Research Institution (STRI), at the request of Centro de Incidencia Ambiental (CIAM), found a healthy coral reef with high living coral cover right in front of Isla Margarita and the eastern end of the Panama Canal breakwater. These reefs are not mentioned anywhere in the port’s Environmental Impact Assessment (EIA): the EIA mentions only dead habitat in the area, which would not be affected from dredging nearby. The living coral reefs are only about 100 meters away from the Port dredge and filling operations.

This reef is close to the Isla Galeta Protected Area, and strong measures are needed to protect the highly vulnerable corals from suspended sediments.

This report, and the photos and video attached to it, describes the health status of this extraordinary reef (figures below) and the measures needed to monitor and protect it.

Proposed dredging plans at Isla Margarita, Panama Canal
Port plans. (Image courtesy of the EIA.) Diagonal striped area will become part of the port facility. Seafloor habitat to be filled in and turned into land is shown in stipple.
Proposed port lies right next to healthy coral reef in front of Isla Margarita, just outside the Panama Canal entrance.
The port lies right next to healthy coral reef in front of Isla Margarita. The photos and video in this report were all taken inside the coral reef area shown in blue, just across the breakwater from the area that will filled in for the expanded port.

The full report, with photographic and video documentation can be seen below.

Isla Margarita, Panama image compilation

Isla Margarita, Panama GCRA survey video

After the survey of Isla Margarita reef was done, the project proponents announced without warning that they had made a mistake: they needed 16 times more dredging material to complete the project than they had projected, and most of the required sand for the filling operations would be dredged in Nombre de Dios. Unfortunately, Nombre de Dios represents the center of the best shallow fringing coral reef flats in the entire Caribbean and is a site of global biodiversity importance.

Nombre de Dios Bay. The shallow reef flat of this bay is the best developed in the entire Caribbean.
Port plans. (Image courtesy of the EIA.) Diagonal striped area will become part of the port facility. Seafloor habitat to be filled in and turned into land is shown in stipple.

 


GCRA team surveys reef in lieu of controversial Panama Canal port project

Panamanian environmental groups use Global Coral Reef Alliance study of healthy coral reef in front of the Panama Canal breakwater to try to save it from destruction by port development.

La Prensa article December 28 2017 (Spanish)

CIAM announcement


Biorock electric coral reefs survive the most severe hurricanes with little or no damage

Two new Global Coral Reef Alliance videos answer the question many people have: what happens in a hurricane? Here we show that Biorock reefs hit by the eye of three of the strongest Caribbean hurricanes, Hanna, Ike, and Irma, suffered almost no physical damage and built up sand around them during the event.

In contrast, solid concrete objects nearby caused so much scour and erosion around and under them that they sank into the sand. Solid breakwaters cause reflection of waves at the solid surface, concentrating all the wave energy in one plane, which causes sand to wash away in front of the structure, then underneath, until it is undermined and collapses. This is the inevitable fate of any vertical seawall, so they need constant and costly repair and replacement. After Hurricane Andrew every single shipwreck in South Florida was torn apart or moved great distances due to the strong surface drag. Not one remained intact.

Biorock electric coral reefs can be any size or shape. For growing corals, we make open frameworks, so the corals can benefit from the water flow through the structure, just as they do in coral reef. As a result of their low cross section to waves, they dissipate energy by surface friction as waves pass through them, refracting and diffracting waves rather than reflecting them. Their low drag coefficient means that they survive waves that would move or rip apart a solid object of the same size.

Here we show what happened to Biorock reefs after the most severe hurricanes ever to hit Saint Barthelemy and Grand Turk. Incredibly, there was little or no physical damage to the structures or to the corals, even though these structures were not welded, simply wired together by hand, and they were not physically attached to the bottom, simply sitting on the bottom under their own weight, attaching themselves to hard bottoms and cementing sand around their bases through growth of limestone rock over their surfaces.

Saint Barthelemy:

Grand Turk:

These astonishing results follow our previous video showing the record recovery of severely eroded beaches behind Biorock reefs:

Scientific papers documenting the Grand Turk results are at: Effect of severe hurricanes on Biorock Coral Reef Restoration Projects in Grand Turk, Turks and Caicos Islands

and the rapid restoration of the beach at: Biorock Electric Reefs Grow Back Severely Eroded Beaches in Months

It is important to realize that neither rocks nor structures exposed at low tide shown in this video are an essential part of the method. Almost all of Biorock structures are completely submerged and have no rocks. At Pulau Gangga this design was used to protect the beach from storms at high tide, and effectiveness was more important than aesthetics to the Resort, so they opted not to have what most people want: an invisible watchman that you can’t see at low tide sunset!

In addition, Biorock electric reefs greatly increase the settlement, growth, survival, and resistance to stress of all marine organisms, with only a single known exception: predatory sharks avoid electric fields that confuse them, protecting people and sharks from each other (Uchoa, O’Connell, & Goreau, 2017). In 2016 there was nearly complete survival of Biorock corals during severe high-temperature events that bleached and killed more than 95% of corals on nearby reefs.

Our results show that Biorock electric reefs are the most cost-effective method for saving corals from global warming, restoring reef communities (whether corals, oysters, or mussels), and protecting coastlines from erosion and global sea level rise.